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Abstract

The task assignment problem is fundamental in combinatorial optimisation,
aiming at allocating one or more tasks to a number of agents while minimiz-
ing the total cost or maximizing the overall assignment benefit. This prob-
lem is known to be computationally hard since it is usually formulated as a
mixed-integer programming problem. In this paper, we consider a novel time-
triggered dimension reduction algorithm (TTDRA). We propose convexifica-
tion approaches to convexify both the constraints and the cost function for
the general non-convex assignment problem. The computational speed is
accelerated via our time-triggered dimension reduction scheme, where the
triggering condition is designed based on the optimality tolerance and the
convexity of the cost function. Optimality and computational efficiency are
verified via numerical simulations on benchmark examples.

Keywords: Task assignment, Convex optimisation, Combinatorial
optimisation, Convex relaxation

1. Introduction

The Task Assignment Problem (TAP) is of great importance in combina-
torial optimisation [1]. The formulation of this problem is that, given a set
of agents and a set of tasks, each agent can select a task from its admissible
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task set, while pairing between tasks and agents is one-to-one. The goal is
to minimize the total cost or maximize the global utility.

Typical types of TAPs are the linear assignment problem (LAP) and the
quadratic assignment problem (QAP). The LAP has a linear cost function
and binary decision variables, i.e., 1 means a selection and 0 means a rejec-
tion. There are many real-world applications that can be formulated as a
LAP, ranging from robot formation control [2], [3], [4] to facilities allocation
[5]. The LAP has been well investigated with many different methods in both
centralized and decentralized ways. Centralized algorithms include the Hun-
garian algorithm [6], and its extensions involves iterative algorithms [7], [8].
These methods have high computational efficiency for small-scale problems,
but they cannot be easily implemented in parallel, limiting their usage to
large-scale instances. To address this limitation, another class of algorithms
called auction algorithms [9], [10], [11], [12] provide an improved solution,
imitating bidding in an auction. For a comprehensive literature review of
this area, readers are referred to the survey paper [13].

Another type of TAP is the QAP, which was firstly proposed in [14] aim-
ing at solving resource allocation problems. The QAP has a similar structure
to the LAP, except for the quadratic cost function. QAPs are widely used in
many applications, e.g. the travelling salesman problem [15], graph matching
[16], [17], [18] etc. Unlike the LAP, which allows finding a global optimum
in polynomial time with multiple heuristic algorithms, the QAP is prov-
ably NP-hard in general [1], which makes it hard to design efficient heuristic
algorithms. Relaxation algorithms have been proposed to overcome this lim-
itation. The original mixed-integer programming problem is relaxed into a
continuous optimisation problem [19]. This idea is derived from the fact that
permutation matrices are at the vertices of Birkhoff polytopes, i.e., the class
of doubly stochastic matrices. Thus, several efforts have been made to find
good solutions over doubly stochastic matrices, followed by a projection of
the solution to the set of permutation matrices. A penalty term can be added
to the original quadratic cost function to convexify the nonconvex quadratic
cost function [20]. Tighter convex underapproximations were proposed to
improve the optimality of the solution [21] [22].

The projection on the space of permutation matrices is realized with a
convex-to-concave method [23], which incrementally tunes the penalty quan-
tity to change the convexity of the quadratic cost from convex to concave.
The solution is a permutation matrix since the minimizer lies on the vertices
of the convex constraint hull while minimizing a concave cost function [24].
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This algorithm finds a solution path of a family of convex to concave min-
imization problems, obtained by linearly interpolating between the convex
and concave relaxations. The interpolation procedure requires solving addi-
tional n problems, which makes it computationally expensive. Besides, the
sub-problems in the procedure are nonconvex.

Motivated by the above limitations, in this paper, we propose a fast
relaxation-based iterative algorithm for the TAP, especially for the nonconvex
QAP. Our contributions are twofold:

• A convex relaxation-based framework is proposed. The non-convex
permutation set is relaxed to a polyhedral doubly stochastic set. The
nonconvex quadratic cost function is convexified to be σ-strongly con-
vex.

• Computational speed acceleration is realized through a time-triggered
dimension reduction approach: we reduce the dimension of the deci-
sion matrix incrementally by removing columns and rows. Compared
to the convex-to-concave method, our method only solves the optimisa-
tion problem once, and the dimension of the problem is incrementally
decreased. In addition, the convexity of the convexified cost function
is preserved across iterations.

The remainder of the paper is organized as follows. In Section 2 we
define the notations used in this paper and introduce the formulation of TAP,
including LAP and QAP. The convex relaxation is presented in Section 3.
Section 4 details our time-triggered dimension reduction algorithm, followed
by the simulations in Section 5. Section 6 concludes the paper.

2. Problem Formulation

2.1. Preliminaries

We use IN to denote the N×N identity matrix, and 1N to denote the N -
dimensional vector whose entries are all equal to one. When it is obvious from
the context, we omit the subscripts and use I and 1 instead, respectively. R
represents the set of real numbers and || · ||F denotes the Frobenius norm. We
let vec(X) denote the vectorizartion operation for a matrix X, and vec−1(x)
the inverse operation that takes as input a column vector and returns a
matrix for a vector x. A⊗ B represents the Kronecker product of matrix A
and B. X ≥ 0 denotes point-wise non-negativity of the elements of matrix
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X. X � 0 means that matrix X is positive semi-definite. Let DSN denote
the set of N ×N doubly stochastic matrices, i.e. DSN = {X : X ≥ 0,1TX =
1T , X1 = 1}, ΠN denote the set of N ×N permutation matrices, i.e. ΠN =
{X ∈ {0, 1}N×N : XTX = IN}. Tr(X) denotes the trace of matrix X.
th≥0(X) sets the negative elements of X to zero.

Definition 1. A differentiable function f(·) is called σ-strongly convex with
σ > 0 on a domain D if the following inequality holds for all x, y ∈ D:

f(y) ≥ f(x) +∇f(x)T (y − x) +
σ

2
||y − x||22.

We now discuss the LAP and QAP. Although the LAP can be regarded as
a special case of QAP, we still want to briefly introduce it for its importance
in applications.

2.2. Linear Assignment Problem

The LAP describes a scenario in which every agent i is capable of choosing
one particular task j from the tasks pool. After that, a specific predefined
work cost or award is added. Each agent can only select a single task, and
every task can only be allocated to one agent. Our goal is to find an optimal
assignment strategy for each task/agent pair, to realize a maximum reward
or minimum cost.

In considering such a problem of pairing agents with tasks, a linear pro-
gramming formulation can be derived

min
X

F (X) =
N∑
i=1

(
N∑
j=1

Xi,jβi,j

)
subject to X ∈ ΠN ,

(1)

where βi,j ∈ R is the predefined cost for agent i to select task j. Decision
variable X should be within the N -dimensional permutation set. The LAP
is a tractable P-problem, which has an efficient solution without additional
constraints.

2.3. Quadratic Assignment Problem

The Quadratic assignment problem originates from facility-location allo-
cation problems. Suppose there are n facilities and n locations, and assume
that the distances between locations and flows of facilities are known. The
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problem is to assign the facilities to different locations resulting in a minimum
sum of the products of the distances and flows. Intuitively, pairwise facili-
ties which have higher flows are encouraged to be placed at nearer locations.
Unlike the linear assignment problem, the cost function of this problem is
expressed in terms of a quadratic function.

The classic Koopman-Beckmann formulation of the QAP is as follows

min
X

Tr(AXBXT )

subject to X ∈ ΠN ,
(2)

where A ∈ RN×N is the flows matrix and B ∈ RN×N is the distance matrix.
Making use of the cyclic properties of the Tr(·), we can rewrite the objective
function in (2) as follows

Tr(XBXTA) = Tr(XTAXB)

= vec(X)Tvec(AXB)

= vec(X)T (B ⊗ A)vec(X)

= xTWx,

(3)

where x = vec(X) is the vectorization of the permutation matrix X, W ∈
RN2×N2

= (B ⊗ A). In this paper we consider a more general form of (3),
where a linear term is added:

min
x
f(x) = xWxT + cTx

subject to vec−1(x) ∈ ΠN ,
(QAP)

where W ∈ RN2×N2
, c ∈ RN2

. It should be noted that the LAP is a special
case of the QAP with zero quadratic matrix W . In the sequel we just consider
the QAP as it covers the LAP as a special case. Here we denote this problem
as the original QAP.

Existing results point out that it is hard to solve (QAP) precisely because
it is NP-hard [1]. Possible additional constraints can also increase the com-
plexity, even when the constraints are affine. This motivates us to develop
an efficient algorithm to find a sub-optimal solution for problem (QAP), as
well as address the challenge of additional constraints.

5



3. Convex Relaxation

To efficiently solve OQAP, an intuitive idea is to use constrained quadratic
programming tools. However, (QAP) is generally nonconvex for two reasons:
i) the constraint is nonconvex; ii) the cost function is nonconvex when W is
not necessarily positive semi-definite. In this section we present results with
respect to the convexification, including the convexification of the constraints
vec−1(x) ∈ ΠN and the cost function f(x). We begin this section with the
convexification of the constraint set, i.e. the set of permutation matrices.

3.1. Convexifying the Constraints

The original problem (QAP) is a mixed-integer programming problem
over permutation matrices. Xij = 1 implies that a specific task is chosen by
a corresponding agent, and vice-versa. Intuitively, the resulting minimizer
of such problems is a deterministic distribution, which is a special case of
a stochastic distribution. This motivates us to consider solving a relaxed
version of the original assignment problem over the set of doubly stochastic
matrices, which renders the optimisation problem continuous.

The constrained relaxed QAP (CRQAP) is described as:

min
x
f(x)

subject to vec−1(x) ∈ DSN .
(CRQAP)

3.2. Convexifying the Cost

Convexifying the nonconvex quadratic cost function has been well studied
in quadratically constrained quadratic programming (QCQP) over the past
decades [25]. Existing QAP papers [20], [21], [22], [26] proposed a series
of convexification tools which can be summarized into two categories, αBB

convexification Q̂AP , and semidefinite programming (SDP) convexification

Q̃AP . The first one is defined as follows:

xT (W + diag(α))x+ (c− α)Tx, (Q̂AP )

where α ∈ RN
+ is chosen so that W + diag(α) is positive semi-definite. [20]

selected α = −µmin1, where µmin denotes the minimum eigenvalue of W ;
(Q̂AP ) is therefore convex over RN . [22] further proposed a tighter convex-
ification by restricting the variable to an affine space X = X0 + Fz, where
F ∈ RN2×(N−1)2 denotes the null space of DSN .
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The SDP convexification Q̃AP comes from an observation that the cost
function in (3) could be rewritten as:

Tr((B ⊗ A)vec(X)vec(X)T ).

Substituting Q = vec(X)vec(X)T , (QAP) becomes:

min
Q,x

Tr(WQ)

subject to Q = xxT .

Note that the cost function above is linear, the only nonconvex part is the
constraint on Q. Such constraint can be relaxed to Q − xxT � 0, and by
some means of the Schur complement this is equivalent to:[

Q x
xT 1

]
� 0.

Substituting the quadratic constraint Q = xxT with the above positive semi-
definite constraint, the SDP convexification is formulated as:

min
Q,x

WQ

subject to

[
Q x
xT 1

]
� 0,

x ≥ 0.

(Q̃AP )

Theorem 1. ([25]) Let ẑ and z̃ denote the optimal values of the problems

Q̂AP and Q̃AP , respectively. Then ẑ ≤ z̃.

Theorem 1 shows that Q̃AP gives a tighter underestimation than that of

Q̂AP at the price of lifting the variable dimension, as well as solving a more
complex SDP rather than a simpler QP.

In this paper, we convexify the cost function based on Q̂AP to reach
a trade-off between computational efficiency and tight underestimation. To
obtain a better convergence rate, we convexify the cost function to be σ-
strongly convex.

Lemma 1. The cost function f is σ-convex if and only if W − σ
2
I � 0 .
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Proof. From the definition of σ-strong convexity we obtain, ∀x, y, vec−1(x) ∈
DSN , vec−1(y) ∈ DSN :

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)− α(1− α)σ

2
||x− y||22, (4)

for any α ∈ [0, 1], which implies that:

α(1− α)xTWx+ α(1− α)yTWy − α(1− α)xTWy

− α(1− α)yTWx− α(1− α)σ

2
||x− y||22 ≥ 0

⇔ (x− y)TW (x− y)− σ

2
(x− y)T (x− y) ≥ 0

⇔ (x− y)T (W − σ

2
I)(x− y) ≥ 0.

(5)

The reverse is similar. Thus, W − σ
2
I � 0⇔ f(x) is σ-strongly convex.

Following the results of Lemma 1, the relaxed QAP (RQAP) formulation
is:

min
x

f̃(x) = xT (W + (σ
2
− µmin)IN)x+ cTx+

−σ
2

+µmin

N

subject to vec−1(x) ∈ DSN .
(RQAP)

It can be seen that f̃(x) ≤ f(x), since ∀x ∈ DSN , (σ2 − µmin)xT INx ≤
(σ

2
− µmin)/N . The equality is fulfilled only when x ∈ ΠN . In the sequel we

use W̃ = W + (σ
2
− µmin)IN for brevity.

After presenting the convexification for both the constraint and the cost
function, the comparison between the optimal values of the original problem
(QAP) and the relaxed problem (RQAP) is given by the following lemma.

Lemma 2. The optimal values of the relaxed problem (RQAP) and the orig-
inal problem (QAP) satisfy:

min
vec−1(x)∈DSN

f̃(x) ≤ min
vec−1(x)∈ΠN

f(x).

Proof. According to the Birkhoff–von Neumann theorem, the set of N ×
N doubly stochastic matrices DSN is the convex hull of the set of N × N
permutation matrices ΠN , i.e. ΠN ⊂ DSN . Besides, we have f̃(x) ≤ f(x)
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according to the previous discussion. Thus, the optimal value over the set of
doubly stochastic matrices is no bigger than that over the set of permutation
matrices.

Lemma 2 reveals that the minimum of the relaxed problem (RQAP) is a
lower bound of the minimum of the original problem (QAP). This immedi-
ately implies the following proposition about when a zero gap is realized.

Proposition 1. Let x∗ be the minimizer of (RQAP). Then x∗ is the global
minimizer of (QAP) if and only if vec−1(x∗) ∈ ΠN .

Proposition 1 shows that if the optimal solution of (RQAP) lies in the
permutation set, we can conclude that we have found the global minimizer
of the original QAP (QAP).

4. Dimension Reduction Algorithm

The relaxed problem (RQAP) is a smooth continuous optimisation prob-
lem, which can be solved with multiple numerical solvers, e.g. Ipopt, SQP.
However, when the problem’s dimension becomes exceptionally high, such a
problem is hard to solve in real time. More specifically, consider the quadratic
assignment problem: the dimension of variable x is N2, where N is system
size.

4.1. Time Triggered Dimension Reduction

Here we notice that the permutation matrix has a sparsity structure,
where only N entries are non-zero out of N2 elements. This motivates us
to propose a dimension reduction scheme to accelerate the solution. For
example, when one element increases faster than others, we can binarize it
into one and then ground the elements which lie within the same column or
row to zero. This also enables us to transform the decision variable from a
doubly stochastic matrix to a permutation matrix. Our method is based on
the steepest projection gradient method; we chose such a method compared
to other first-order optimisation methods because the original problem has an
explicit gradient expression at every iteration. Besides, with our alternating
directional projection algorithm, the projection can be realized within a few
steps.

The time-triggered dimension reduction algorithm is described in Algo-
rithm 1.
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Algorithm 1 Time-Triggered Dimension Reduction Algorithm (TTDRA)

Input: parameters ε ∈ R+, {αk} ⊆ (0,+∞)
Initialize: x(0) ∈ RN2

, W̃ (0) = W̃ , l = 0, count = 0, niter, P = 0, η
Output: resulting permutation matrix P

1: while P /∈ ΠN do
2: x(k + 1)← ProjDS(x(k)− αk∇f̃(x(k)))
3: if count ≥ niter then
4: count← 1
5: X(k + 1)← vec−1(x(k + 1))
6: find index {c, r} of the maximum element from X(k + 1)
7: delete column c and row r from X(k + 1)
8: W̃ (l + 1)←delete columns and rows from W̃ (l)
9: find real original row and column index c̃, r̃
10: Pc̃,r̃ ← 1

11: niter ← min

{⌈
log( 1

ε )
2 log

(
µmax+µmin
µmax−µmin

)
⌉
, η

}
12: else
13: count← count + 1
14: end if
15: end while

Line 2 is the steepest projection gradient descent operation, where∇f̃(x(k))
denotes the gradient of f̃ along x(k), i.e. ∇f̃(x(k)) = (W̃ +W̃ T )x(k)+ c. As
for the choice of time-varying gradient step size αk, we use the steepest de-
scent algorithm in this paper, for it shows great convergence results for QP. In
this algorithm the step size αk is determined by means of optimal line search
as αk = arg min

α
f̃(x(k))−α∇f̃ , and for our quadratic cost function αk has an

explicit form solution αk = ∇f̃T (xk)∇f̃(xk)

∇f̃T (xk)W̃∇f̃(xk)
. Line 3 indicates time-triggering

and we find the maximum elements of variable X(k+ 1) in Line 6, indicated
by column index c and row index r. In Line 7, the corresponding rows and
columns and deleted from the decision variable X(k+ 1) (see Figure. 1). By
using I to denote the index set of elements X(k)r,1:N , X(k)1:N,c in x(k), then
W̃ (l)1:(N−l)2×(N−l)2,i and W̃ (l)i,1:(N−l)2×(N−l)2 with i ∈ I are deleted from the

cost matrix W̃ (l) in Line 8 (see Figure 2). The new cost matrix W̃ (l+1) has
dimension of (N − l− 1)2× (N − l− 1)2. After that, Line 9 aims at finding
the original row and column index c̃, r̃, which are different from c, r. The
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Figure 1: Deleting the r-th row and the c-th column from X(k), where X(k)r,c is the
largest element of X(k).

Figure 2: Deleting the i-th columns and rows from W̃ (l), where i ∈ I.

reason is that c, r belongs to the index set of the reduced matrix X(k), with
lower dimension compared with X(0). Then, Line 10 sets element Pc̃,r̃ = 1
for the resulting permutation matrix P . Finally, Line 11 calculates the time
coefficient for the next dimension reduction process depending on the prede-
fined tolerance ε, and a predefined positive integer η. Here, the formulation
is derived from the linear convergence speed for steepest descent algorithms

over quadratic cost [27]. The exponential decay term is
(
µmax−µmin

µmax+µmin

)2

, where

µmax and µmin denote the maximum and minimum eigenvalues of the cost
matrix W̃ (l), respectively. η is used as a truncation to avoid niter becoming
unacceptable large.

4.2. Projection onto DSN
In Algorithm 1, the projection function ProjDSN is defined as:

ProjDSN (X) = arg min
Y ∈DSN

1
2
||X − Y ||2F , (6)

which yields the closest matrix in the set of doubly stochastic matrices based
on Euclidean distance. Here we note that we omit an inverse vectorization
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operation in line 2 of Algorithm 1. The authors of [28] proposed an iterative
algorithm for performing the projection onto doubly stochastic spaces, but
only limited that to symmetric matrices. In most cases, the cost matrix can
be symmetrized with no influence on the optimum. However, some special
structure properties like sparsity may be changed. So here we give a more
general alternating directional projection algorithm for random input matrix,
where the doubly stochastic matrix Y is not necessarily symmetric. This is
summarized in Algorithm 2.

Algorithm 2 Alternating Directional Projection Algorithm
Input: matrix X
Output: doubly stochastic matrix Y

1: while Y /∈ DSN do
2: λ← (AAT )−1(1− AX)
3: X ← X + ATλ/2
4: X ← th≥0(X)
5: end while
6: Y ← X

Theorem 2. The input matrix X converges to the closest doubly stochastic
approximation P with Algorithm 2.

Proof. We split the projection problem (6) into two sub-problems, where
one is with an inequality constraint, and the other one is with an equality
constraint. The advantage is that each of the sub-problems has an analytical
solution. Therefore, the solution of (6) is at the intersection of the two
sub-problems.

Consider the sub-problem with an affine equality constraint:

arg min
Y

||X − Y ||2F
subject to AY = 1,

(P1)

where A =

[
IN ⊗ 1T

1T ⊗ IN

]
. Note that the equality constraint for vec−1(Y ) ∈

DSN is:
vec−1(Y )1 = 1,1Tvec−1(Y ) = 1T .
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Reformulating the above two equality constraints leads to AY = 1. The
corresponding Lagrangian is

L(Y, λ) = Tr(Y TY − 2XTY )− 2λT (AY − 1), (7)

where λ is not constrained. The first order condition over the primal variable
Y of L(Y, λ) results in:

Y = X + ATλ. (8)

Multiplying (8) on both sides by A:

AY = AX + AATλ, (9)

implies that λ = (AAT )−1(1−AX). Combined with (8), we get the explicit
solution as:

X + AT (AAT )−1(1− AX). (10)

The second subproblem with affine inequality constraint is:

arg min
Y

||X − Y ||2F
subject to Y ≥ 0.

(P2)

Its solution is
th≥0(X). (11)

Then, with the iterative projection onto the two sets, Algorithm 2 leads
to the convergence of X to the projection onto the intersection, DSN .

4.3. Complexity Analysis

This subsection presents the results of the complexity analysis of our algo-
rithm, including two parts: the number of iterations required for convergence
onto a permutation matrix and floating-point operations required.

Theorem 3. The number of iterations required for the resulting matrix P ∈
ΠN of Algorithm 2 is O(N), and the number of floating point operations is
O(N3).

Proof. One column and one row of X are reduced every

Nniter ≤ N

⌈
log( 1

ε )
2 log

(
µmax+µmin
µmax−µmin

)
⌉

iterations, while the element of P with the

same corresponding column index c̃ and row index r̃ is set to 1. The two
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indices, c̃ and r̃, are then deleted from the column index set 1, . . . , N and row
index set 1, . . . , N . This guarantees no repetition of a non-zero entry over
every column and row of matrix P and the existence of such entry. Besides,
although niter changes across iterations, it is irrelevant to the dimension N .
Thus, with O(N) iterations, the resulting matrix P ∈ ΠN .

The floating-point operations mainly lie in line 2 of Algorithm 1. The total
complexity of lines 3-13 can be omitted as it scales asO(N2). We first analyze
the complexity of gradient descent. The floating point operations required
for N2 dimensional x(k) − αk∇f(x(k)) is O(N2), this operation repeats for
Nniter times, therefore the total cost is niter

∑N
n=1 n

2 = O(niterN
3). The

floating-point operations required in Algorithm 2 mainly come from matrix
multiplication, since the inverse calculation over AAT only needs to be done
once. Thus, with O(N2) time floating-point operations in a loop, the total
amount of computation is O(N3). Combining the complexity of gradient
descent and projection, the resulting time complexity is O(N3), as niter is a
constant.

Remark 1. The choice of niter depends on the accuracy and computational
speed requirement. With larger niter, the accuracy will be higher because of
more gradient descent steps, whereas the computational speed will be lower.

Compared to existing results on the convex-to-concave method [20], [21],
[22], [29], our method does not require to incrementally tune the penalty term
to guarantee the solution to be a permutation matrix. In their formulations,
the penalties often depend on the maximum and minimum eigenvalues of
matrix W̃ , which brings extra difficulties on computation for a large scale
system. Besides, in our dimension reduction algorithm the accumulated time
consumption of the multiplication is lower compared with the convex-to-
concave method because of dimension reduction.

4.4. A Note on Convexity

It is proved that the relaxed QAP (RQAP) is convex if and only if W̃ is
positive semi-definite, and strictly convex if and only if W̃ is positive definite.
The following two problems are of interest:

Problem 1. Can Algorithm 1 preserve the convexity of QAP in each itera-
tion if it is convex initially?

Problem 2. Can Algorithm 1 preserve the σ-convexity of QAP in each it-
eration if it is σ-strongly convex initially?
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Note that Problem 1 is a special case of Problem 2. We prove the state-
ments of Problem 2, which then directly extends to Problem 1.

Theorem 4. f̃l(x) is σ-strongly convex for all l ∈ [1, . . . , N − 1] if f̃0(x) is
σ-strongly convex.

Proof. Let W̃ (l) denote the l-th cost matrix corresponding to f̃l(x), then we

have W̃ (l) ∈ R(N−l)2×(N−l)2 . We use rl = {r1
l , . . . , r

2(N−l)−1
l } to represent the

index set of reduced columns and rows from W̃ (l), hl = {1, . . . , N − l}\rl
to denote the indices set of residue elements. Then, we select x(l) ∈ R(N−l)2

of which the m-th element x(l)m = 0,∀m ∈ rl. We assume that W̃ (l) is
σ-strongly convex. Then the following holds

x(l)T (W̃ (l)− σ

2
IN−l)x(l) ≥ 0,

⇒
∑
i∈hl

∑
j∈hl

x(l)ix(l)jW̃ (l)i,j −
∑
i∈hl

σx(l)i
2

2
≥ 0.

(12)

Let x(l + 1) denote the dimension reduced vector of x(l), then (12) implies:

x(l + 1)T (W̃ (l + 1)− σ

2
IN−l−1)x(l + 1) ≥ 0. (13)

Therefore, since x(l) is defined randomly over indicies hl, (13) proves that
W̃ (l + 1) is σ-strongly convex. In addition, it is assumed that W̃ (0) is σ-
strongly convex, it follows that W̃ (l) − σ

2
IN−l is positive semi-definite for

all l ∈ [1, . . . , N ], which is equivalent to fl(x) is σ-strongly convex for all
l ∈ [1, . . . , N ].

5. Simulation

We tested our algorithm on a variety of QAP instances, all the experimen-
tal data comes from QAPlib1 which includes Bur, Chr, Els, Esc, Had, Kra,
Lipa, Nug, Rou, Scr, Sko, Ste, Tai, Tho, and Wil. We compare our results
against two other algorithms, the SDP relaxation (C-SDP) [26], and the dou-
bly stochastic relaxation [20] with convex-to-concave [23] algorithm (PATH).

1https://coral.ise.lehigh.edu/data-sets/qaplib/qaplib-problem-instances-and-
solutions/
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These two algorithms stand for two kinds of convexfication algorithms shown
in Section 3. The former one belongs to SDP convexification algorithm (5)
and the later one belongs to the doubly stochastic convexification algorithm
(CRQAP). The comparison includes two parts, i.e. the final value of cost
and computing time. The dimension of data set varies from 10 to 256. It
should be noted that the class of SDP relaxation algorithms [30], [19], [26] is
not able to produce permutation matrices. To illustrate the comparison, we
utilize the Hungarian algorithm for projection onto permutation matrices, as
introduced in the last paper. All the experiments are performed on a PC
with 32GB RAM, 3.8GHz Intel i7-10700KF CPU.

5.1. Computing Time

We first show the optimality comparison among C-SDP, TTDRA, PATH.
For C-SDP, we select n = 4 graph nodes per variable, for PATH we chose n =
10 iterations for convex-to-concave sampling, TTDRA we set the tolerance
to be 0.5, and the convexity to be 106. The first column of Fig. 3 shows the
computation time used by TTDRA, PATH, and C-SDP. TTDRA is shown
to be 10 − 104 faster than PATH and 104 − 106 faster than C-SDP; the
C-SDP is the slowest algorithm since it lifts the dimension of the decision
vector and requires solving an SDP, which is known to be computationally
expensive. For some examples belonging to esc class, the computing speed of
TTDRA is slower than PATH (Fig. 3e). This phenomenon is raised because
of redundant iterations used for TTDRA, i.e. the minimum has been reached
before the time condition is triggered.

5.2. Optimality

We then show the optimality comparison among C-SDP, PATH, and
TTDRA. The second column of Fig. 3 shows the optimal values obtained by
TTDRA, PATH, and C-SDP. We can see that the value obtained by TTDRA
is competitive compared with other methods. On the other hand, the op-
timal value of TTDRA and C-SDP are close in most instances, and PATH
acquired a better solution for more cases. The reason behind this results is
that, PATH use the results from the last iteration.

6. Conclusion

We have presented a time triggered dimension reduction algorithm for
efficiently solving the task assignment problem. The nonconvex optimisation

16



1 2 3 4 5 6

instances

0

1

2

3

4

5

6

7
lo

g
(t

im
e
)

CSDP

TTDRA

PATH

(a) computation time for bur class instances

1 2 3 4 5 6

instances

3

4

5

6

7

8

9

10

11

v
a
lu

e

10
6

CSDP

TTDRA

PATH

(b) optimal value for bur class instances

0 2 4 6 8 10 12 14

instances

-2

-1

0

1

2

3

4

5

6

7

lo
g
(t

im
e
)

CSDP

TTDRA

PATH

(c) computation time for chr class instances

0 2 4 6 8 10 12 14

instances

0

2

4

6

8

10

12

14

v
a
lu

e

10
5

CSDP

TTDRA

PATH

(d) optimal value for chr class instances

0 2 4 6 8 10 12 14 16 18

instances

-2

0

2

4

6

8

10

12

lo
g
(t

im
e
)

CSDP

TTDRA

PATH

(e) computation time for esc class instances

0 2 4 6 8 10 12 14 16 18

instances

0

200

400

600

800

1000

1200

1400

v
a
lu

e

CSDP

TTDRA

PATH

(f) optimal value for esc class instances

1 2 3 4 5

instances

-2

-1

0

1

2

3

4

5

6

lo
g
(t

im
e
)

CSDP

TTDRA

PATH

(g) computation time for had class instances

1 2 3 4 5

instances

1000

2000

3000

4000

5000

6000

7000

8000

v
a
lu

e

CSDP

TTDRA

PATH

(h) optimal value for had class instances

Figure 3: comparison between TTDRA, PATH, and C-SDP
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problem is convexified to be σ-strongly convex. The output of the algorithm
is guaranteed to be a permutation matrix. We further showed that the con-
vexity is preserved across the iterations. We also gave an upper bound of the
computational complexity. The computational speed and optimality of our
algorithm are verified on benchmark examples. In the future we aim at inves-
tigating stochastic variants of the proposed scheme, as well as parallelizable
algorithms.
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