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Abstract— Collision avoidance is a widely investigated topic
in robotic applications. When applying collision avoidance tech-
niques to a mobile robot, how to deal with the spatial structure
of the robot remains a challenge. In this paper, we design a
safe control law for the structured Mobile Robotic Arm (MRA)
by solving a spatial structure-aware Quadratic Programming
(QP), which is constrained by Control Barrier Functions (CBFs)
based linear constraints. According to our proposed safe control
algorithm, the safe control law is computed online and can
successfully navigate the structured MRA to the desired state
while avoiding collision with obstacles. The spatial structure of
the MRA is incorporated in the QP by merging the rigid link
restrictions into CBFs constraints. Simulations on a rigid rod
and our modeled MRA are performed to verify the efficacy of
the proposed method.

I. INTRODUCTION

Mobile Robotic Arms (MRAs) are one kind of mobile
robots consisting of robotic arms and mobile bases. With
the spatial structures. MRAs allow more flexible operations
to complete tasks of grasping and obstacle avoidance, and
simultaneously introduces higher computational complexity.
Regardless of the spatial structure, various techniques have
been proposed in the past decades for collision avoidance
problems, including Cell Decomposition [1], Potential Field
Methods [2]) and heuristic methods (Fuzzy Logic Controller
technique [3], Neural Network technique [4]). The readers
are referred to [5] for an overview in this area. When
applying these collision avoidance techniques to a structured
mobile robot (i.e. MRA), the literature focuses on dealing
with its spatial structure and high degrees of complexity
(DOC).

As for dealing with the spatial structure of the mobile
robot, existing approaches mainly use geometric envelopes
to approximate and simplify the structure in the obstacle
avoidance task. For instance, [6] enveloped the mobile robot
and moving obstacles by spheres with different radii. And
a mobile service robot, which is abstracted as a cylinder
to navigate among movable obstacles was proposed in [7].
They addressed the obstacle avoidance problem by setting
the minimum allowed distance with consideration to these
radii. However, simplifying the structured mobile robots
with geometric envelopes restricts its permitted workspace
and its interaction with the environmental obstacles [7] (i.e.
changing the structure in different surroundings).
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The high degrees of complexity renders the calculation
of control law for the MRA computationally expensive [8],
if the spatial structure is fully considered. In [9], a hybrid
teleoperation system was proposed to decouple the control of
the mobile base and the manipulator, where the teleoperator
carries out the motion control for the mobile base and
the collision avoidance task is shifted to the manipulator
subsystem. [10] proposed an optimization-based method to
plan the obstacle avoidance motion for the MRA with
the verification of the inverse kinematic calculation, which
is not always guaranteed a feasible solution and requires
much more calculation with the DOC increasing. Therefore,
we expect to find an always feasible and computationally
inexpensive method for the MRA to avoid collision with the
obstacles.

Recently, the Control Barrier Functions (CBFs) approach
is proposed as a promising and efficient tool for safe con-
trol [11]. By using a Quadratic Programming (QP) based
framework, the safety requirements can be encoded as affine
constraints. Significant success for this approach has been
shown in robotics applications, especially in collision avoid-
ance [12]. Extensions such as considering actuation capacity
[13], safety-critical Lagrangian systems [14], MPC-CBF [15]
for collision avoidance have been proposed. In the context of
the safe control for multi-agent system in [13], the dimension
of the multi-agent system is merged in the constraints of the
CBFs-based QP. As the dimension of the agents increases,
the amount of the constraints in the QP rather than the QP
itself is to increase, which is proved to be time efficient [16].

In this paper, we aim at synthesizing a safe control law
for a structured MRA. The proposed safe control law is able
to drive the MRA to the desired state while avoiding col-
lision with environmental obstacles. The challenge brought
by the spatial structure is interpreted as the high degrees
of complexity of the MRA. Inspired by [13], we propose
to overcome the challenge by firstly introducing a CBFs
based QP and then merging the high degrees of complexity
into the constraints of the QP. The QP is solved in real
time and with the DOC of the MRA increasing, the time
consumption increases slightly. The main contributions are
stated as follows:

• We synthesize a safe control law by solving a CBFs-
based QP. This safe control law can successfully drive
our modeled MRA to the desired state while avoiding
collision with environmental obstacles.

• Our proposed approach incorporates the spatial structure
of the MRA by merging the degrees of complexity into
CBFs constraints and therefore the time consumption
will not explode as the DOC increase.



The remainder of this paper is organized as follows.
Preliminaries and reach-avoid task are specified in Section II.
Safe control law for MRA with CBF is derived in Section
III. Simulations are presented in Section IV. We conclude
the paper in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first introduce the notion of safety,
safety sets and present the forward invariant theorem based
on the CBFs which renders the set of safe control laws. Then
we give the problem formulation of safe control for MRA.

A. Control Barrier Functions

Throughout the paper, we consider a nonlinear control
affine system:

ẋ = f(x) + g(x)u, (1)

with f(x) and g(x) are locally Lipschitz, x(t) ∈ D ⊂ Rn

and u(x, t) ∈ U ⊂ Rm represents the admissible input.
Consider a set C defined as the zero super-level set of a
continuously differentiable function H(x) : D → R as:

C = {x ∈ Rn : H(x) ≥ 0},
∂C = {x ∈ Rn : H(x) = 0},

Int(C) = {x ∈ Rn : H(x) > 0}.
(2)

Let u = k(x) be a feedback controller such that the
resulting dynamical system

ẋ = fcl(x) = f(x) + g(x)k(x), (3)

is locally Lipschitz. Due to the locally Lipschitz assumption,
for any initial condition x(0) ∈ D, there exists a maximum
interval of existence I(x(0)) = [0, τmax), such that x(t) is
the unique solution to (1) on I(x(0)); in the case when fcl is
forward complete [17], τmax = ∞. This allows us to define
safety as follows.

Definition 1. A set C is forward invariant with respect to
system (3) if for every initial state x(t0) ∈ C, there exists
u, such that the solutions remain within C, i.e., x(t) ∈ C for
∀t ≥ t0.

We refer to C as the safe set. If C is forward invariant,
then the system (3) is safe. Before defining the formulation
of control barrier functions, an extended class-K function,
defined by α(·) : (−b, a) → (−∞,∞), is monotonicly
increasing and α(0) = 0. This allow us to define [18]:

Definition 2. Let C ⊆ D ⊂ Rn be the super-level set of a
continuously differentiable function H(x) : D → R. Then
H(x) is a control barrier function (CBF), if there exists an
extended class-K function α(·), such that ∀x ∈ D, for the
control system (1) the following inequality holds:

sup
u∈U

[∂H(x)

∂x
(f(x) + g(x)u)

]
≥ −α(H(x)). (4)

Remark 1. The conventional answer was to enforce Ḣ(x) ≥
0 so that C is forward invariant. This may not be desirable

since it requires all subsets of C to be invariant. A condition
analogous to this was relaxed by [19] where the key idea was
to only require a single subset to be invariant, thus resulting
the condition (4). Ḣ(x) = dH(x)

dt = ∂H(x)
∂x

∂x
∂t = ∂H(x)

∂x ẋ.

Define KCBF(x) as the safe control law set:

KCBF(x) =
{
u ∈ Rm :

∂H(x)

∂x
(f(x)+g(x)u) ≥ −α(H(x))

}
.

(5)
Then, from Definition 2 we have that any u(x) ∈ KCBF(x)
guarantees the set C forward invariant [17]. Suppose given a
feedback control law u = K(x) for the control system (1), it
may be the case that K(x) /∈ KCBF(x) for some x ∈ D. To
modify this controller in a minimal way so as to guarantee
safety, we consider the following Quadratic Program (QP)
that finds the minimal perturbation on K(x):

u(x) = argmin
u∈U

1

2
∥u−K(x)∥2 (CBF-QP)

s.t.
∂H(x)

∂x
(f(x) + g(x)u) ≥ −α(H(x)).

B. Reach-Avoid Problem Formulation

Our goal is to design a feasible control law that drives a
MRA to the desired state without collision with obstacles.
Note that the degrees of complexity of the MRA come from
the number of joints and rigid links. We model the MRA as
follows:

• from the mobile base to the end-effector of the MRA,
suppose there are Nep joints, which are regarded by
edge points labeled by ai, i = 1, · · · , Nep;

• refer the links between the edge points as line segments,
denoted by Ai (Ai links ai and ai+1, link Ai can rotate
around edge point ai in a plane), i = 1, · · · , Nep − 1.
Ai could be regarded as a compact set in the space;

• describe the MRA A as a union of the links, where

A =

Nep−1⋃
i=1

Ai. (6)

This allows us to call the MRA a multi-link system. To give
problem formulation, we introduce edge point state x(i) ∈
Rn, rigid link state xAi ⊂ Rn, and MRA state XA ⊂ Rn.
Note that these states are time-variant, so we rewrite them
as x(i)(t), xAi(t) and XA(t).

Problem 1. Given a MRA workspace X ⊂ Rn, and divide it
into an obstacle-occupied space Xobs ⊂ X and an obstacle-
free space Xfree = X \Xobs, find a feasible control law u(x)
that drives the MRA from the initial state (t1) to the terminal
state (t2) while avoiding collision with the obstacles, i.e.

XA(t) ⊂ Xfree, t ∈ [t1, t2]. (7)

III. SAFE CONTROLLER DESIGN FOR MRA WITH CBF

In this section, we synthesize the safe control law for
the structured MRA with CBF-QP. The designed CBF-QP
incorporates the spatial structure of the MRA by merging



Fig. 1. The process of the rigid link and edge points movement. The
rigid link forces fixed distance between any two connected edge points. By
applying the CBF-QP method with rigid link restriction of distance, the
rigid link collides with the obstacle but its edge points successfully avoid
collision with the obstacle.

the rigid link restrictions into constraints. In this way, when
the number of the edge points increases, we just need solve
the same amount of the QP with increased constraints.

A. Obstacle-free Space Regeneration

To design the safe control for the MRA, we firstly start
with exploring the safe control for its rigid links. Inspired
by the multi-agent safe control in [13], we regard the two
edge points of one rigid link as the two agents, and then
respectively solve the (CBF-QP) for them. Moreover, we
force a fixed distance between them. As illustrated in Fig.
1, the rigid link collides with the obstacle although the edge
points successfully avoid collision with the obstacle in the
navigation. In order to fill this gap, we propose to regenerate
the obstacle-free space. The obstacle-free space is generally
a non-convex set, as depicted in [20], which is the key point
why the case in Fig. 1 happens. On the contrary, suppose the
obstacle-free space Xfree is a convex set, ∀x(1), x(2) ∈ Xfree,
equation:

λx(1) + (1− λ)x(2) ∈ Xfree,∀λ ∈ [0, 1]

holds according to the convex set definition. This indicates
that if the two edge points are within the convex set, then
the rigid link connecting them is ensured in this convex set
as well.

Therefore, we conduct the regeneration by extracting a
series of convex sets (e.g. ellipsoids) Ck ⊂ Xfree, k =
1, . . . , N , from the original obstacle-free space [14]. From
the start of the second convex set, each convex set has an
intersection with the previous one. In order to satisfy the
CBF conditions, we choose the ellipsoids as the convex sets
for its convexity and compactness. Several algorithms can be
used in order to find obstacle-free ellipsoids in the workspace
and we refer [21] and [22] to the readers.

As for the transmission between the consecutive ellipsoids,
given the initial state XA

(1) ⊂ C1 and the terminal state
XA

(N+1) ⊂ CN of the MRA, we assign the succeeded state
XA

(k+1) of the current expected state XA
(k), k = 1, . . . , N−1,

by solving:

XA
(k+1) = arg max

XA
(k+1)

⊂Rn

1

2
∥XA

(k+1) −XA
(k)∥

2 (8)

s.t. XA
(k+1) ⊂ Ck ∩ Ck+1.

Remark 2. Note that the ellipsoids Ck and Ck+1 have a part
of the overlapping area. The overlapping area can be tuned
[22] so that it can accommodate the MRA, i.e., the constraint
XA

(k+1) ⊂ (Ck ∩ Ck+1) is solvable. The MRA system is
ensured in these ellipsoids while transmitting between the
consecutive ellipsoids.

B. State Space Model of the MRA System

Suppose we have a MRA (defined by (6)) with Nep edge
points and Nep−1 links (with length li, i = 1, . . . , Nep−1):

State Space Model of the MRA System. The state of the
edge points are regarded as their positions in the workspace
(x ∈ X ⊂ Rn). 1) Assign the input of the system as:

u = [v⊤n1×1 θ̇⊤(Nep−1)×1]
⊤, (9)

where vn1×1 ∈ Rn1 (n1 ≤ n) is the translation velocity
vector, and θ̇(Nep−1)×1 is the rotation velocity vector. 2) For
ai, i = 1, . . . , Nep, choose the first one as the translation-
velocity-driven edge point. The first edge point only pos-
sesses the translation velocity, so

ẋ(1) = [v⊤n1×1 0⊤(Nep−1)×1]
⊤. (10)

3) For the rest of the edge points x(i), i = 2, . . . , Nep−1:

x(i) = x(i−1) + li−1F(θ⊤(i−1)×1), (11)

where F is a combination function of sine and cosine
functions such that ∥F(θ(i−1)×1)∥ = 1. This indicates that
∥x(i) − x(i−1)⊤∥ = li−1, i.e., the distance between edge
points ai−1 and ai is fixed.

C. Safe Control for MRA with CBF

An ellipsoid can be described by the following equation:

(x− x0)
⊤B(x− x0) = 1,

where B is a symmetric, positive definite matrix, x ∈ Rn

and x0 ∈ Rn representing the center of the ellipsoid. Recall
that C in (2) is a super-level set of H(x), and by applying C
to encode obstacle-free ellipsoids as Ck, k = 1, . . . , N , we
propose to define H directly from the generic equation of
ellipsoids as Hk, k = 1, . . . , N :

Hk(x) := 1− (x− x0)
⊤Bi(x− x0).

Edge Point CBF-QP. Safe control for one edge point (EP)
can be achieved by (CBF-QP), specified as:

u(x(i)) = arg min
u∈Rn

1

2
∥u−K(x(i))∥2 (EP CBF-QP)

s.t. u ∈ K
(k)
CBF(x

(i)),

where,

K
(k)
CBF(x

(i)) =
{
u ∈ Rm :

[∂Hk(x)

∂x
(f(x) + g(x)u)

+ α(Hk(x))
]∣∣∣

x=x(i)
≥ 0

}
.

(12)

x(i) represents the state of the edge point ai and Hk(x) is
the current ellipsoid. The K(x(i)) is the previously computed



feedback controller that the (EP CBF-QP) is supposed to
follow.

In the context of the extracted ellipsoids from the obstacle-
free space, if the edge points are computed in one of the
ellipsoids, then the rigid links connecting them are ensured
in the ellipsoid, which indicates the union of these rigid links
(i.e. MRA) is guaranteed in the ellipsoid. This allows us to
extend (EP CBF-QP):

MRA CBF-QP. Safe control for MRA can be achieved by
synthesizing the safe control for all the edge points:

u∗ = arg min
u∈Rm

1

2
∥u−K(XA)∥2 (MRA CBF-QP)

s.t. u ∈
Nep⋂
i=1

K
(k)
CBF(x

(i)).

u∗ is in the form of u(XA).

Remark 3. Note that u ∈ K
(k)
CBF(x

(i)) is a linear constraint.
Given (10) and (11), u ∈ K

(k)
CBF(x

(1)) contains variables
v⊤n1×1 and u ∈ K

(k)
CBF(x

(i)) contains variables v⊤n1×1, θ̇
⊤
i×1,

i = 1, . . . , Nep.

Proposition 1. The constraint of the (MRA CBF-QP), i.e.,
u ∈

⋂Nep

i=1 K
(k)
CBF(x

(i)) is always solvable for the MRA
system defined as (6) with state space model (10) and (11).

Proof. To prove with mathematical induction, we firstly
consider the case when Nep = 1. Then the constraint of the
(MRA CBF-QP) becomes u ∈ K

(k)
CBF(x

(1)), which is always
solvable.

Assume that when Nep = p (p ≥ 2), the constraint u ∈⋂Nep

i=1 K
(k)
CBF(x

(i)) is always solvable, then we need to prove
when Nep = p+ 1, the conclusion still holds.

Let Nep = p+ 1, the constraint can be rewritten as:

u ∈
p⋂

i=1

K
(k)
CBF(x

(i)), (13)

and at the same time,

u ∈ K
(k)
CBF(x

(p+1)). (14)

Note that linear constraints (13) and (14) contain variables
v⊤n1×1, θ̇⊤p×1 and v⊤n1×1, θ̇⊤p×1, θ̇p+1 respectively. The (13)
is always solvable, so we can find some (v⊤n1×1, θ̇

⊤
p×1)π

satisfying (13) and then substitute to (14) to find feasible
(θ̇p+1)π . Therefore, (v⊤n1×1, θ̇

⊤
p×1, θ̇p+1)π is a feasible solu-

tion to u ∈
⋂Neq

i=1 K
(k)
CBF(x

(i)) when Nep = p+ 1.

A safe control algorithm for the MRA is proposed in
Algorithm 1 (given threshold δ1, δ2 and maximum iteration
I in one ellipsoid).

IV. SIMULATIONS

In this section, simulations of safe control for a rigid rod
system and the MRA system are performed to verify the
proposed algorithm. The QP solver is CVXGEN [23].

Algorithm 1: Safe Control Algorithm for MRA
Input: ellipsoids Ck, k = 1, . . . , N ; MRA initial state

XA
(1) ⊂ C1 and terminal state XA

(N+1) ⊂ CN .
1 for k = 1 : N do
2 solve (8) for XA

(k+1);
3 acquire the present state of MRA XA(t);
4 if ∥XA(t)−XA

(N+1)∥ ≤ δ1 then
5 break;
6 end
7 assign K(XA) according to XA

(k) and XA
(k+1);

8 for iter = 1 : I do
9 if ∥XA(t)−XA

(k+1)∥ ≤ δ2 then
10 break;
11 end
12 solve (MRA CBF-QP) for safe control law

u∗;
13 update XA(t) with u∗ and sample time ∆t;
14 end
15 end

A. Safe Control for Rigid Rod System in 2D Domain

We firstly consider a rigid rod system (with length l1 and
workspace X ⊂ R2), which is actually a special case when
Neq = 2 for the MRA. According to (9), the input of the
rigid rod system u = [vx, vy, θ̇1]

⊤, where vx, vy , θ̇1 are the
horizontal translation velocity, vertical translation velocity
and the rotation velocity with which the second edge point
rotates around the first edge point in the XY plane. According
to (10), we assign the first edge point as:

ẋ(1) = [vx, vy, 0]
⊤,

and the second edge point as:

x(2) = x(1) + l1[sin θ1, cos θ1]
⊤.

As shown in Fig. 2(a), we aim at driving the rigid rod
from the initial state to the end state without collision with
the rectangle obstacles in a maze environment. According
to the regeneration method, a series of 2D ellipses are
extracted from the obstacle-free space shown in Fig. 2(b).
The succeeded states in each pair of consecutive ellipses are
calculated with (8) ( drawn in Fig. 2(c)).

Then the safe control (illustrated in 3) is conducted
for the rigid rod system following the Algorithm 1. In
(MRA CBF-QP), we set the predefined controller as the pure
proportional controller computed as a proportional gain times
the distance between the present state of the system and its
succeeded state. The extended class-K function is α(x) = x.

B. Safe Control for MRA System in 3D Domain

We then consider the MRA system (workspace X ⊂ R3)
defined as (6). With the increasement of the value of Nep, the
structure of the MRA gets more complex (shown in Fig. 4)
and the states of the edge points in the MRA system become
more complicated.



(a) maze environment (b) reprocess (c) succeeded states

Fig. 2. 2D maze environment and prep work of safe control. In the
maze environment, grey rectangles are obstacles and obstacle-free space is
obviously non-convex. By applying finding obstacle-free ellipses method
[22] in the workspace, we reprocess the obstacle-free space and extract a
series of consecutive-overlapped ellipsoids. Succeeded states in each pair
of consecutive ellipses can be calculated once we set the initial θ1. In Fig.
2(c), we regard the left bottom of the maze as the start and the right top as
the end. We set θ1 = π/2 and the first edge point is painted red while the
second one is painted blue.

Fig. 3. The procedure of the safe control for rigid rod in maze environment.
The left figure shows the states changing procedure and the right figure
shows the path of the edge points. The rigid rod is driven from the initial
state to the end state successfully without collision with the obstacles.

Example with Nep = 5, we analyze the state space model
of the MRA system. 1) Input

u = [vx, vy, θ̇1, θ̇2, θ̇3, θ̇4]
⊤,

where vx, vy and θ̇i (i = 1, 2, 3, 4) are the horizontal trans-
lation velocity, vertical translation velocity and the rotation
velocity with which the (i+ 1)th edge point rotates around
the (i)th edge point (θ̇1 in XY plane, θ̇2 in YZ plane, θ̇3 in
YZ plane, θ̇4 in YZ plane). 2) The first edge point is assigned
as:

ẋ(1) = [vx, vy, 0⊤4×1]
⊤.

3) Given length of the (i)th rigid link li , the states of the
rest of the edge points (let s1 = sin θ1, s23 = sin(θ2 + θ3),
s234 = sin(θ2+θ3+θ4), and c1 = cos θ1, c23 = cos(θ2+θ3),
c234 = cos(θ2 + θ3 + θ4)):

x(2) = x(1) + l1 ∗ [0, 0, 1]⊤,
x(3) = x(2) + l2 ∗ [s2c1, s2s1, c2]⊤,
x(4) = x(3) + l3 ∗ [c23c1, c23s1, s23]⊤,
x(5) = x(4) + l4 ∗ [c234c1, c234s1, s234]⊤.

Fig. 4. The structure of the MRA with different values of Nep. Here
we enumerate the cases when Nep = 3, Nep = 4 and Nep = 5. In the
figure, edge points are painted red and the rigid links are painted blue. The
grey base represents the mobile base and in the simulation, it is regarded
as the first edge point which is hidden within it. The rotation rule of each
edge points are also marked for the state space model analysis later of this
subsection.

As shown in Fig. 6, we aim at driving the MRA from
the initial state to the end state without collision with the
obstacles in a 3D workspace. We reprocess the obstacle-
free space of the workspace and a series of 3D ellipsoids
are extracted from the obstacle-free space (Fig. 6(b)). The
succeeded states in each pair of consecutive ellipsoids are
calculated with (8) (6(c)).

Fig. 5. The minimum distance of each edge point to the safe set boundary
are depicted as curves of different colors. The edge point is in within the
safe set if the distance is above zero plane, otherwise outside the present
safe set.

Then we conduct the safe control for the MRA system
following Algorithm 1. The predefined controller is set
as the a proportional gain times the distance between the
consecutive states of the MRA and the extended class-K
function is α(x) = x. The procedure of the safe control
for the MRA system is illustrated in Fig. 7. The paths of
the edge points are drawn in different color in Fig. 7(b) and
for each edge point, we plot its minimum distance to the
boundary of the present safe set, shown in Fig. 5. All the
distances are above the zero plane and the curves tend to



(a) 3D workspace (b) reprocess of the obstacle-free space (c) succeeded states

Fig. 6. 3D workspace and prep work of safe control. In the 3D workspace, the obstacle-free space is obviously non-convex and therefore we reprocess
the obstacle-free space and extract a series of consecutive-overlapped ellipsoids [22], shown in Fig. 6(b). Succeeded states in each pair of consecutive
ellipsoids can be calculated after specifying the initial state. In Fig. 6(c), we only mark the succeeded states of the first edge point (red points in pink
ellipsoids) for a clearer look.

(a) procedure of the safe control (b) paths of the edge points

Fig. 7. Procedure of the safe control for the MRA. The MRA is set at an initial state, and if the MRA keeps the original structure, it will collide with
the obstacles while passing the narrow road. Suppose the MRA is grasping some object so it has to stretch the links. With the safe control law solved
by (MRA CBF-QP), we ensure the stretch of the links and guarantee the safety of the MRA. In the procedure of the navigation, the MRA changes its
structure as a kind of interaction with the surroundings to avoid collision with the obstacles. The paths of the edge points are drawn in different colors
shown in Fig. 7(b).

change approximately periodically with respect to time. This
is reasonable because the MRA transmits though the series
of the ellipsoids and in each ellipsoid follows the same steps
of navigation.

Additionally, we test the time consumption of the
(MRA CBF-QP) with different values of the Nep (i.e. the
degrees of the complexity of the MRA). Results of the time
consumption for one iteration are listed as follows: 0.0230s
(Nep = 2), 0.0245s (Nep = 3), 0.0259s (Nep = 4), 0.0272s
(Nep = 5), 0.0282s (Nep = 6), etc. As the value of Nep

increases, the time consumption increases slightly (≤ 10%).
The value of Nep can be larger than “6” listed above and as
long as the state space model of the MRA can be specified,
the Algorithm 1 can work.

V. CONCLUSION AND FUTURE DIRECTION

In this work we solve the problem of safe controller design
for a structured MRA in an obstacle-clustered environment.
To be exact, we design a spatial structure-aware QP, which
is constrained by CBFs based linear constraints and propose

the safe control algorithm for MRA. The safe control law
is solved online and can successfully navigate the MRA
to the desired state while avoiding collision with obstacles.
Simulations of a rigid rod in 2D domain and the modeled
MRA in 3D domain have been conducted to verify the feasi-
bility of the algorithm. Additionally, the time consumption of
our proposed method will not explode as the degrees of the
complexity of the MRA increases. In the future we will apply
our approach to physical test-bed and take the sensor-based
obstacle-free space regeneration into consideration. To fill the
gap between the simulations and the physical experiments,
we will also consider to introduce the dilation process into
the safe control for MRA.
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[7] M. Wang, R. Luo, A. Ö. Önol, and T. Padir, “Affordance-based
mobile robot navigation among movable obstacles,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 2734–2740, IEEE, 2020.

[8] B. Sangiovanni, A. Rendiniello, G. P. Incremona, A. Ferrara, and
M. Piastra, “Deep reinforcement learning for collision avoidance of
robotic manipulators,” in 2018 European Control Conference (ECC),
pp. 2063–2068, IEEE, 2018.

[9] S. Thakar, P. Rajendran, H. Kim, A. M. Kabir, and S. K. Gupta, “Ac-
celerating bi-directional sampling-based search for motion planning of
non-holonomic mobile manipulators,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 6711–6717,
IEEE, 2020.

[10] W. Li and R. Xiong, “Dynamical obstacle avoidance of task-
constrained mobile manipulation using model predictive control,”
IEEE Access, vol. 7, pp. 88301–88311, 2019.

[11] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in 53rd IEEE Conference on Decision and Control, pp. 6271–6278,
IEEE, 2014.

[12] P. Glotfelter, J. Cortés, and M. Egerstedt, “Nonsmooth barrier func-
tions with applications to multi-robot systems,” IEEE control systems

letters, vol. 1, no. 2, pp. 310–315, 2017.
[13] Y. Chen, A. Singletary, and A. D. Ames, “Guaranteed obstacle

avoidance for multi-robot operations with limited actuation: a control
barrier function approach,” IEEE Control Systems Letters, vol. 5, no. 1,
pp. 127–132, 2020.

[14] F. S. Barbosa, L. Lindemann, D. V. Dimarogonas, and J. Tumova,
“Provably safe control of lagrangian systems in obstacle-scattered
environments,” in 2020 59th IEEE Conference on Decision and
Control (CDC), pp. 2056–2061, IEEE, 2020.

[15] A. Thirugnanam, J. Zeng, and K. Sreenath, “Safety-Critical Control
and Planning for Obstacle Avoidance between Polytopes with Control
Barrier Functions,” arXiv e-prints, p. arXiv:2109.12313, Sept. 2021.
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