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Moving Obstacle Avoidance and Topology
Recovery for Multi-agent Systems

Han Wang, Yushan Li, Wenbin Yu, Jianping He, and Xinping Guan

Abstract—This paper proposes a novel moving obstacle avoid-
ance algorithm for multi-agent systems. The method has ro-
bustness in maintaining formation shape. Even if link failure
occurs among agents when avoiding obstacles, the communication
topology of the system can be recovered based on the conditions
we obtain. The main idea includes two parts, i) a flexible function
of relative velocities and positions between agents and obstacles
is designed to avoid moving/stationary obstacles, and ii) based
on initial adjacent matrix and graph connection characteristic, a
topology recover mechanism is proposed to guarantee formation
shape and no extra links are involved. The proposed algorithm
has the following advantages: i) It is able to recover formation
shape, even if some links among agents are broken while avoiding
moving obstacles; ii) In the process of rebuilding communica-
tion links, the proposed algorithm can protect communication
topology from being altered maliciously. Furthermore, we obtain
conditions of the topology recovery for both directed and undi-
rected graph. Some simulations are conducted to demonstrate
the efficiency of the proposed algorithm.

I. INTRODUCTION

Formation control is one of the most actively studied topics
within the realm of multi-agent systems, aiming to drive agents
to achieve prescribed shape. Consensus-based method is one of
the most common way [1]. There are many applications related
to formation control such as unmanned vehicles, wheeled
robots, satellites, etc [2] [3]. It is remarkable that, formation
control and path planning, the two research topics have a large
overlap, where obstacle avoidance is a major part [4]. In real
situations, an agent of the formation must have the ability to
avoid collision with other agents and obstacles. It has received
more and more attentions to design superior collision/obstacle
avoidance algorithm.

Design an efficient obstacle avoidance function is the key
challenge for the avoidance algorithm. Initially, artificial po-
tential field (APF) is raised in [5]. The key idea is that the
target has attraction force and obstacles have repulsion force
to the agents, respectively, producing a potential field. Based
on this approach, [6] presents a methodology for exact robot
motion planning and control that unifies the purely kinematic
path planning problem with the lower level feedback controller
design. The author in [7] further raises virtual force field,
which combines certainty grids for obstacle representation
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with artificial potential fields for navigation. This method
is usually used when there are numeric obstacles. However,
these researches just consider static obstacles. The methods
are desired to apply to moving obstacles.

There are two main challenges for moving ones: i) sampling
and predicting [8] the velocities of obstacles; ii) designing
collision-free function. Some literatures investigate sampling
problem. Authors in [9] use sampling and stochastic prediction
to predict obstacle’s motion. Others focus on algorithm design.
In [10], a randomized motion planner for agents is design to
achieve collision-free, where the obstacle is assumed to be
known. In [11], the author represents a concept named velocity
obstacle to achieve obstacle avoidance by selecting the velocity
from feasible velocity set. [12] further investigates the problem
for non-linear velocity obstacle.

Recent works mainly combine formation control and ob-
stacle avoidance. Formation control and obstacle avoidance
for multi agent systems with non-holonomic constraints is
studied in [13]. The authors in [14] and [15] concern about
the dynamic model of multi robot systems. Authors in [16]
propose a virtual and behavioral structure, in which the agents
are modeled by electric charge. Based on this structure, a rota-
tional potential field is applied to avoid obstacles. In addition,
many researches take specific applications into account. For
instance, [17] improves potential function and behavior rules
to effectively control the formation of a multiple autonomous
underwater vehicle system in uncertain environment. In [18],
the author considers the shape of the agents and proposes an
algorithm, which can be used to rectangular agents.

On the other hand, some works focus on possible topology
switching while avoiding obstacles in multi-agent systems.
In real systems, especially when the agents are avoiding
obstacles, they may move out of their neighbors’ communica-
tion range. Thus, it’s significant to investigate the formation
problem with switching topology while avoiding obstacles.
[19] further proposes a Lyapunov function to deal with average
consensus problem of the flock system with obstacle avoid-
ance. [20] [21] further investigate consensus problem with
directed switching topology. Authors in [22] combine obstacle
avoidance and formation control for switching topology, but
they just consider to change Laplacian matrix in their forma-
tion, with no realistic conditions given to maintain consensus
while avoiding obstacles. [23] takes account of communication
range in a second order system, provides a sufficient condition
on the initial velocities, positions and the communication
range which guarantees consensus of the system. [24] further
investigates the system with probable package loss.
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However, exiting works basically assume that connection
can be established with any nearby nodes, which is not
desired to maintain a prescribed formation shape and may even
give rise to vulnerabilities of the system. Motivated by this,
we design an obstacle avoidance algorithm, where the links
between agents can is recovered only when they exist initially.
In this architecture, links among agents can be protected from
being altered maliciously. We combine formation protocol and
moving obstacle avoidance algorithm with possible switching
topology, and derive a condition, under which the topology of
the system can be safely recovered when it is broken.

Main contributions of this paper are summarized as follows:

« A novel obstacle avoidance algorithm is proposed, which
is based on a flexible function of relative velocity and
relative position between agents and obstacles. This al-
gorithm has strong robustness in maintaining formation
of the multi-agent system.

« For the proposed protocol, a topology recovery mechanis-
m is designed, such that communication graph is recov-
ered without being altered while formation is restored.

« Based on multi-agent systems, relations between number
of broken edges and topology recovery for both directed
graph and undirected graph are demonstrated.

« Extensive simulations are conducted to prove the effec-
tiveness for algorithm and correctness of conditions.

The rest of this paper is organized as follows: In Section II
concepts from graph theory are reviewed, formation control
of the system and sampling of obstacles are presented. In
Section III design of collision avoidance algorithm are shown.
Conditions of topology recovery are obtained in Section IV.
Simulation results are shown in Section V. Conclusions are
given in Section VI.

II. PRELIMINARIES

To avoid collision between agents and obstacles for multi-
agent systems, an avoidance function is usually added to
formation control protocol. Moreover, for moving obstacles,
sampling and prediction of their motions are necessary. In this
section, firstly, some preliminary concepts from graph theory
are reviewed; secondly, formation control algorithm is shown;
thirdly, sampling of obstacle is discussed.

A. Graph Theory

Let G =(V,€) be an directed graph to model the information
flow among agents,where V = {1,...,N} is the set of nodes
and £ C V x V denotes the set of edges. Every node in the
graph represents an agent and every directed edge represents
an information flow channel. An edge (i,j) € £ indicates
that the agent j transmits some information to agent i. The
adjacency matrix A = [a;;] € RV*Y of a graph G =(V, €)
with N nodes specifies the interconnection topology of the
multi-agent system. In the graph, a;; = 1 if (¢,7) € &, else
a;j = 0. Let N; = {i € V: a;; # 0} denote the neighbors of
node i. Define Laplacian matrix L of the graph G as L = D—A,
where D = diag(A-1). Here 1 =[1 1 1 ... 1]V € RY denotes

the vector of ones, which is also one of the right eigenvector
of L corresponding to eigenvalue, Ay =0,and L - 1 =10

B. Formation Control

Consider a group of mobile agents with kinematic models

given by
-

where i = 1,.... N, p;i(k) = [2;(k) y;(k)]T describes the
position of agent i in the plane R, v;(k) = [viz (k) viy(k)]T
denotes the velocity of agent ¢ at time ¢, respectively. To
achieve desired formation shape, the control law is designed
by

pilk+1) = pi(k) +uf"™ (k), (1

N
u{wm(k) = Z aij(p; (k) — pi(k) = rij), 2
j=1

where r;; represents the predefined formation distance be-
tween agent ¢ and agent j.

If the graph of the system has a spanning tree, consensus
can be reached in the end, and the stability and robustness of
the system have been proved in [2].

C. Sampling of Obstacle

To avoid collision between moving obstacles with agents,
possible trajectory of obstacles needs to be known. In real
situations, agents are able to detect the obstacles and sample
their positions to predict velocities, then their trajectories can
be estimated. In this problem, sense-time is defined as the time
instant at which the agent senses the obstacle position and
velocity. Control-period is defined as the time interval during
which the robot performs sensing, predicting and planning
for collision motion. It is assumed that control-period can
be divided by sense-time, which means that agents can get
real velocities of obstacles when they need to avoid obstacles.
Thus, the whole process consists of sampling and avoidance.
Thus, sampling process is presented as follows.

Consider holonomic kinematic model of moving obstacle.
Let po(k) = [7,(k) yo(k)]T be the position of obstacle o in the
plane R? , and v,(k) = [Voz (k) voy(k)]T denote the velocity
of obstacle o at time t respectively.

Every agent has a sensor which can scan the environment
with the sampling period ¢, and bounded sampling range R,
which is a bounded constant. If one obstacle exits in the range,
agents can predict its velocity by two sampling period. We use
P,(t) and V,(t) to represent the position and velocity of the
obstacle when it is detected. We have

Po(t2) — Po(ty)

Vol(te) = r—

, 3
where t5 and ¢; represent two sampling moments, and ¢ — ¢
= ts. After P,(t2) and P,(t;) are sampled, we calculate the
velocity of the obstacle by (3) at real time.
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III. MAIN RESULTS

A. Problem Analysis
We define Vi(k) =[0is(k) 0iy(k)], and Pi(k) =
[Diz (k) Piy(k)] as the relative velocity and relative position

between agent ¢ and obstacle within the sensor detecting
range. They are calculated by

—

Vi(k) = [:(k) — (k) 5:(k) — 00(R)] ",
Bi(k) = [wo(k) — (k) yolk) — wi(k)]" .

Some possible positions of agents and obstacles are shown
in Fig. 1. R and r are the radius of detection and protection ar-
eas around each agent, respectively. The arrow, which denotes
relative speed is shown as \Z(k) arrow between agent and
obstacle denotes relative location, which is shown as ﬁl(k)
In this condition, obstacles can be regarded as static. Fig. 1
shows some possible positions of obstacles and agents.

To avoid obstacles, an avoidance function is usually used.
In this work, the function is designed as

L
o (k) — €i(K)|

where { is used to represent x and y. L; = [L;, Liy]T is a
function of V;(k) and P;(k), us® (k) = [u%®(k) ughs (k)T
n is a positive const. In this design, the fractional value will
increase if agents and obstacles stay closer. And the function
L;, is designed to change the velocities of agents to avoid
obstacles as well as minimally change the velocity directions

to maintain formation.

uf® (k) =n (4)

Definition 1. Let d,, be the distance between the obstacle
and the expected trajectory of one agent, which is decided by
relative velocity between agents and obstacles. Then, d,, is
calculated by

N L T GET G SR
m K2 + 1 y
where K is the slope of V;(k), satisfying

K =tanp = E}zy(k)

Note that d,,, represents probable collision situation between
agents and obstacles. If d,, increases with time and becomes
bigger than the detection radius of agents, obstacle avoidance
is achieved.

B. Algorithm Design

To achieve obstacle avoidance, firstly we give a lemma
as follows, which is a basic part in the proof of avoidance
function achievement.

Lemma 1. If the obstacle comes into detection range of agent
i, and dy, < r, then, piy(k)0iz(k) and piy(k)0iy, (k) are not
less than 0 at the same time, i.e.

Piz (k) 0iz (k) + Diy (k) iy (k) >0, V k. (6)

x obstale

Fig. 1: One possible situation

y —> old relative velocity
— old relative position
—> new relative velocity
——< new relative position

¥ old dm

Fig. 2: Process of obstacle avoidance

Proof. The sign of p;o(k)v;¢(k) means whether agent ¢ and
obstacle stay closer or further on ¢ axis. p;e(k)vie(k) > 0
means they stay closer, or they get further. If collision occurs,
the sign of P (k)0iz (k) and psy(k)Dsy (k) are not both neg-
ative at the same time. And for that the z-acceleration speed
depends on y-coordinate, 0, (k) and P, (k) are not zero for
any short period of time. This condition is same as that of y.
Thus, the problem is divided into three possible situations.
o If ﬁ“(k)@“(k) > 0, f)zy(k‘)@zy(kj) > 0, for that {)w(k)
and ©0;,, (k) are not zero all the time, then p;, (k)05 (k) +
Diy (k)0iy (k) # 0. Thus, in this situation, (12) holds.
o If Piy(k)0iy(k) < 0, Piz(k)Viz(k) > 0. Consider at one
time, one obstacle come into detection range of agent ¢,
so |piy (k)| < r, where r denotes protection range. Fig. 2
shows this condition, and one observes that

o) . iy (R)
|Diz (K)| |piz (K|
and we have o + 8 < 5, thus

|0y (F)|[Piy ()|
|0z (F) | P (F)|

tana =

,tan 8

tanatan 8 = <1,
thus, (6) holds.
o If Pig(k)0iz(k) < 0 and pjy (k)0sy (k) > 0, exchanging «
and y, the proof is similar as above.
These three situations include all possible situations, thus,
we have proved the lemma. O

Theorem 1. If the parameters L;, and L;, in (4) satisfy
the follow conditions, then d,, will increase when agent i
approaches obstacle.
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where

{Hi(k)} _ [sgn(ﬁm(k)@m(k)%(k)) )

and ® is cross product. If the Fractional denominator of L;,

and L, equal to 0, we set the value of them to I and -1,
respectively.

If the agents detect the obstacles, the direction of their
movement is determined by L;, and L;,. We can prove that
the algorithm can successfully realize obstacle avoidance by
Lemma 1. and some more analysis. Proof of the theorem is
omitted here due to the space limit.

There will be some constraint conditions in real situations.
Firstly, the obstacle is detected just when it is within the
detecting range, d is defined as the distance between obstacle
and agents, satisfying

dr = V/(@i(k) = 20(k)? + (yi(k) — yo (k)2 ()

where Op is defined as the detection range. Hence, the
obstacle is detected if Og = {z|z < R}, dg € Og, Secondly,
obstacle avoidance algorithm is executed only when d,,, fulfills
O, ={z|x <r}, and d,,, € O,.

The expression of d,, is given by (5), r is protection
range of agents. This condition maintains that in the process
of avoiding obstacles, the velocity directions of the agents
are minimally modified. Thirdly, it follows from (9) that if
the obstacle and agent have a equal x or y coordinate, the
denominator of the fractional is zero, so if the denominator is
smaller than one threshold value, ¢, it will be set to ¢. Thus,

[li(k) = Lo(R)| = g, if [t:i(k) = Lo(K)| < q.

Use A, and A, to substitute |z; (k) —z,(k)| and |y; (k) —yo(k)],
then the controller in (9) is changed as

L; )
"AZ if dp € O & dp € 0y & Ny < q;
obs __ L
up = L fdr € Op & dm € 0, & N > g
q
0 otherwise.

Eventually, the controller of the system combines the o-
riginal formation controller in (2) with obstacle avoidance
controller in (4) as

pi(k+1) = pi(k) +ul " (k) +ug™ (k). (10)

Define agents velocity matrix v = [vy (k) ... v, (k)]T, agents
position matrix p = [p1(k) ... p,(k)]T, obstacles velocity v,
= [Vo1(k) ... Vom (Kk)]T.

IV. TOPOLOGY RECOVERY CONDITION

In real situations, communication constraints are inevitable,
two kinds of communication barrier may exist. Firstly, con-
sidering the communication range of the agents, agents can’t
transmit information to each other unless the distance among
them is not longer than the threshold value. If at some
points a robot is far from his neighbors beyond the range,

Algorithm 1: Obstacle Avoidance
Input: The initial adjacent matrix A, the real-time
adjacent matrix A’, velocity matrix v, position
matrix p, obstacle velocity v,.
Output: obstacle avoidance controller u2%*
for i =1;i < n; do
if dg < detection range then
if |0;(k) — £,(k)| > q&&d,, < r then
wobs — n .LiZ
i [€: (k) —Lo (k)]
if |[0;(k) — £o(k)| < g&d,, < r then
| ugpr =nte

else
obs _
L uy® =0

obs
| return ug,

communication between them will be interrupted. Secondly,
due to environmental interference, there may be packet loss
during communication. The above two cases can be reflected
as the edges in the graph of the system are broken. Conditions
of topology recovery are discussed in this section.

A. Conditions Discussion

Assumption 1. Assume that the directed graph of the system
which has a connected with a root node.

This is a basic assumption, which ensures that the system
can achieve consensus eventually.

Definition 2. G is defined as the graph, 1 is a closed curve
which divides the nodes in the graph into two sets, S and Y,
and SNY = @. S and Y are the parts of graph which are
formed by S and Y.

Theorem 2. Consider a graph that satisfies Assumption 1.
When ¥ n edges are broken, the graph is still connected in the
condition that ¥/ 1), there exits at least n+1 edges which break
through 1), and the edges must start from the set contains the
root node to the set doesn’t. And for graph that is connected
and undirected, the condition is also sufficient and necessary.

Proof. Firstly, we prove sufficiency for undirected graph. In
this case, we prove that for arbitrary ¢, if k£ edges break
through v, k > n + 1, then V n edges are broken, the graph
G is still connected.

There are at most n nodes at the end of the edges that
are disconnected from their father nodes. Use v to surround
all that nodes, and S to represent the set of theses nodes, Y
to represent the else set of nodes. Since nodes in Y are all
father nodes, thus, nodes in Y are connected. And initially the
number of the edges which break through ) is bigger than n,
so § and Y are connected. As to S, just repeat the process,
divide it into S1, Ss...Sp,, each of the graph is connected. And
SUYUS U...US,,, = G, so that G is connected, the sufficiency
for undirected graph is proved.
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Fig. 3: Worst situation of topology break

Secondly, we prove necessity for undirected graph. For this
case, we need to prove that if V n edges are broken and the
graph is still connected, then V 1, there are at least n + 1
edges cross it.

If 3 ¢ with just k£ edges cross it, k& < n + 1. Then, we
let the k edges which are broken all be the former %k edges,
the graph will be separated into two parts, since the two parts
have no edges between them, the graph is disconnected.

Finally, we prove necessity for directed graph, i.e.,if V n
edges are broken and the graph is still connected, then V 1,
there are at least n+ 1 edges cross it and the edges must starts
from the set which contains the root node.

Firstly, like the former proof, if the number of edges which
cross 1 is less than n+ 1, we chose to break them all, thus, the
graph is unconnected. Secondly, if there are n+ 1 edges cross
1, but just n of them are point from the set which contains
the root node, we break them all. In this situation, although
S, Y, are both connected, and they connect with each other,
but there is no way from the root node to every node in S and
Y. The reason why the condition isn’t sufficient for directed
graph is shown in Fig. 4. In the figure, edge with n = 1 is
deleted, and two edges cross v, the graph is connected former,
but isn’t connected later. O

From the discussion, we give a condition in which the
system can reach consensus when n edges are broken in the
graph. Furthermore, we assume that if one agent formerly
communicates with another agent, and their communications
are interrupted at time ¢;. At time t5, The distance between
them becomes shorter than the communication range, then,
the information channel is rebuilt. We use adjacent matrix A
to represent the initial condition of the system, and adjacent
matrix A’ to represent the realtime condition of the system.
Initially, A" = A, a;; and a;j are elements of the matrix.

Topology recovery protocol is given as
a’ij:O, Zf dl-j>R&aij:1, an
a;jzl, ’Lf dijSR&aijZI,

where d;; denotes the distance between node 7 and node j, R
denotes the communication range.

V. SIMULATION RESULTS

In this section, simulations to verify the effectiveness of the
proposed control laws are presented. Considering the system

follower 2 follower 1 000 1 1
leader 1 01 0O
A=|1 0 0 0 1
01 1 00

follower 4 follower 3 0 00 0 O]

(a) System graph (b) Adjacent matrix

Fig. 4: A case of system topology recovery

12
4
10
3
8|
2
6|
1
4
0 2 3B 4 50

(b) Collision-free ~ (c) Recovery  (d) Position error

7/ 6

“(a) Tnitial

Fig. 5: Linear motion

of five agents defined by adjacent matrix A, system topology
graph and adjacent matrix are shown in Fig. 4.

The topology of the system is shown in Fig. 4(a). The
initial positions of the agents are set as : [x1 y1 thy] =
[1 - 2 0], [LCQ Y2 thg} = [—2 1 OL [$3 Y3 thd] =
[1 1 7T/4],[LL'4 Yq th4] = [—2 -1 - 7T/4],[$5 Ys th5] =
[-1 — 1 7w/2], and the formation is defined as: Az =
[-1.5 -3 -15-30], Ay =[1.21.2 —1.2 —1.2 0], Az and
Ay denote the position error among followers and the leader.
Other parameters are set as follows: n =0.5,e=1,R=1,r=
0.8, g = 0.5. Three scenarios are simulated, obstacle avoidance
with one linear motion obstacle, obstacle avoidance with one
circular motion obstacle, and broken topology. In the former
two scenarios, the topology is broken but it can be recovered.
In the last scenario the topology is broken without recovery,
thus, system can not reach consensus.

A. Linear Motion

In this condition, the obstacle has initial position of
b py] = [5 7] and the velocity is set as [vg v,] =
[-0.1 —0.1].

Fig. 5(a) shows the formation of the system before it
encounters the obstacle. It is showed in Fig. 5(b) that the
information channels between agent 4 and agent 2, agent 4
and agent 1 are broken because of the obstacle avoidance of
agent 4. Finally, in Fig. 5(c), all the information channel have
recovered because of the formation algorithm.

Fig. 5(d) shows the z-y error between followers and the
leader. There are some peaks in the figure, for the agents meet
obstacles at that times. And the error converges to zero in the
end, which represents that consensus is achieved.

B. Angular Motion

It is shown in Fig. 6(a) that the topology is broken, and it is
recovered in Fig. 6(b). In this situation the initial position of
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(a) Obstacle avoidance

30 40
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(b) Topology recovery (c) Position error

Fig. 6: Circumferential motion

follower 2 follower 1 0000 1
leader 1 0 0 00
A=[{1 0 0 0 1
011 00

follower 4 follower 3 0 00 0 Of

(a) System graph (b) Adjacent matrix

Fig. 7: System topology for broken case

the obstacle is set as [p, p,] = [8 7], and velocity [v, v,] =
[—0.4sin(t) 0.4 cos(t)]. Position error is shown in Fig. 6(c).

C. Topology Broken

In this condition, the system topology graph and adjacent
matrix are shown in Fig. 7.

It’s easy to check that this graph doesn’t satisfy Theorem 2
if we break three edges. Fig. 8(a) shows the initial position of
the system, Fig. 8(b) shows that the topology is broken, agent
1 and agent 2 are separated from the system. Fig. 8(c) shows
that the system cannot maintain formation in the end.

VI. CONCLUSION

In this paper, a novel moving obstacle avoidance algorithm
and topology recovery conditions based on multi-agent sys-
tems with limited communication range are presented. The
proposed algorithm has a strong robustness in maintaining
formation shape by rebuilding links among agents. System
communication topology can be recovered with no extra links
added while avoiding obstacles, which can maintain formation
under the premise of safety. Simulations demonstrate the
efficiency of the proposed algorithm and correctness of the
obtained conditions. Future directions include extending the
topology condition for common distributed systems and test it
on real multi-robot systems.
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