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Abstract— In this paper we consider the safety verification
and safe controller synthesis problems for nonlinear control
systems. The Control Barrier Certificates (CBC) approach is
proposed as an extension to the Barrier certificates approach.
Our approach can be used to characterize the control invariance
of a given set in terms of safety of a general nonlinear
control system subject to input constraints. From the point
of view of controller design, the proposed method provides
an approach to synthesize a safe control law that guarantees
that the trajectories of the system starting from a given initial
set do not enter an unsafe set. Unlike the related control
Barrier functions approach, our formulation only considers
the vector field within the tangent cone of the zero level set
defined by the certificates, and is shown to be less conservative
by means of numerical evidence. For polynomial systems with
semi-algebraic initial and safe sets, CBCs and safe control laws
can be synthesized using sum-of-squares decomposition and
semi-definite programming. Examples demonstrate our method.

I. INTRODUCTION

Safety-critical systems are commonly used in modern
autonomous applications, such as unmanned aerial vehicles,
autonomous driving and surgical robotics [1]. Their safety-
critical nature requires the behaviour of these systems to
remain within a given safe set for an infinite time horizon.
For a model of these systems, such a property is straightfor-
wardly related to reachability analysis and reach-avoid games
[2], [3], i.e. finding an initial set so that trajectories reach a
target set without entering an unsafe region. However, verify
safety for general nonlinear systems using these methods
is hard due to the computational difficulty of solving the
underlying Hamilton Jacobi Isaacs PDE, especially when
control actuation constraints are considered.

To overcome this issue, the connection between forward
invariance and safety was established in [4]. Forward in-
variance is a system-set property which guarantees that
the trajectories entering a set cannot escape it [5]. By
finding an invariant subset of a safe region, the system is
ensured to be safe. To identify a candidate invariant set,
the Barrier certificates approach which takes the invariant
set as the certificate’s sub-zero level set, was proposed in
[6], [7]. Although the properties of this framework have
been demonstrated for autonomous systems with and without
stochasticity, there is no systematic formulation for the case
where control inputs are present. To address this issue, the
control Barrier functions (CBF) approach was proposed in
[8].
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Control Barrier functions are a class of functions that are
negative in the unsafe regions, and can be used to verify
the safety property. Unlike Lyapunov-like Barrier certificates,
control Barrier functions are less restrictive by introducing an
additional relaxation term in the constraint. Forward invari-
ance is proved by satisfying the constraints and utilizing the
comparison lemma [9]. The approach can be easily combined
with the control Lyapunov functions approach [10] under a
unified quadratic programming framework that compromises
safety and controller performance [8]. It was also shown to
be applicable and promising in many applications such as
adaptive cruise control [11], bipedal robots [12], multi-robot
collision avoidance [13] and others.

Later on, extensive methods to improve the feasibility
when input limits are taken into account were proposed,
such as adaptive CBF [14], [15], higher relative degree CBF
[16], backup CBF [17], singular CBF [18]. These methods
aim at addressing the cases where the CBF based QP is
infeasible. Many times a CBF is assumed to be constructed
directly from a physical property such as kinodynamics of
the vehicle. How to synthesize a CBF efficiently is still an
open question, and has attracted significant attention in recent
years.

Direct numerical synthesis approaches by sum-of-squares
programming [19], [11], machine learning [20], and deep
learning [21] have been proposed. All these methods, either
via convex optimisation, or learning techniques, consider
the synthesis of a CBF with a relaxation term included
in the synthesis procedure. From the standpoint of control
invariant sets, it is guaranteed that there exists a class-K
relaxation term to bound the safety variation, but imposing
such a term at every point inside the set during the control
synthesis introduces conservativeness. Abandoned this term
during the synthesis process has been considered in [22], and
using Positivstellensatz, a weaker condition on invariance is
imposed for systems without input limits.

In this work we revisit the Barrier certificates approach,
and extend it for nonlinear control systems with actuation
constraints. Our formulation is a direct interpretation of
control invariance and safety guarantee, thus alleviating
conservativeness. The existence of a CBC is proved to be
sufficient to guarantee safety, hence the approach can be used
for safety verification. For systems with polynomial dynam-
ics and semi-algebraic safe and initial sets, we use sum-
of-squares programming and the generalised S-procedure to
synthesize a CBC, as well as a Lipschitz continuous safe
control law which fulfills the actuation constraints.

The remainder of this paper is organized as follows.



The notion of control Barrier certificates is introduced in
Section II. The computation methods with sum-of-squares
programming and the S-procedure is presented in Section
III. Several simulation results on synthesizing CBCs and safe
controllers are shown in Section IV. Section V concludes the
paper.

II. CONTROL BARRIER CERTIFICATES

In this section, we consider the controller synthesis prob-
lem under the promise of safety for nonlinear systems.
Existing work on Barrier certificates synthesis either limits
the analysis to noisy autonomous systems, or tries to design a
control law in an online quadratic programming framework.
There is no work focusing on combining Barrier certificates
construction with controller design, which only requires
safety on the boundary of the invariant set. Here, we extend
the results of Barrier certificates to control Barrier certificates
for safety verification and safe controller design. We also
compare our results with the CBF approach.

Notation: R represents the space of real numbers, and Rn

denotes the n−dimensional real space. For a set S, IntS,
∂S, S̄ are the interior, boundary and complementary set,
respectively. A ⪰ 0 means matrix A is positive semi-definite.
Σ[x] and R[x] denote the set of sum-of-squares polynomials
and polynomials in x with real coefficients.

A. Control Barrier Certificates Formulation

We start the formulation for a continuous-time nonlinear
system for generality. The system is described by an ordinary
differential equation:

ẋ = f(x, u), (1)

where x(t) ∈ Rn denotes the state vector, and u(t) ∈ U ⊆
Rm is the control input, where U is a bounded set denoting
actuation limits and f(·, ·) is a locally Lipschitz continuous
vector field. We assume that the solution to (1) is unique.
The flow ψ(x, t, u) denotes the solution of (1) at time t
from initial condition x under control u. The definitions of a
reachable set, forward invariance and safety can be extended
to the control system setting.

Definition 1 (Control Reachable Set). Consider a vector
field f(·, ·), a set X ⊆ Rn and time horizon T ∈ R. Then
the control reachable set of X with respect to vector field
f(·, ·), control law u and time horizon T is RT

f,u(X) :=
{ψ(x, t, u)|x ∈ X, t ∈ T, u ∈ U}.

We note here that although the vector field f(·, ·) in (1)
already includes the control input u, we still denote the
input explicitly in the subscript to distinguish this from the
reachable set RT

f (X) for the autonomous system ẋ = f(x).

Definition 2 (Control Invariant Set). A set X is said to be
control invariant with respect to vector field f(·, ·) if there
exits u, such that R∞

f,u(X) ⊆ X .

If u = 0, we call the set X positive invariant. The
difference between positive invariance and control invariance
is obvious: the control effort allows guaranteeing that the

flow stays in the set. Hence, the safety of the control system
not only depends on the vector field and the predefined safe
set S, but also on the control admissible set U .

Definition 3 (Safety). Given system (1), an initial set I and
a safe set S, we say that the system is safe if there exits
u ∈ U such that R∞

f,u(I) ∩ S̄ = ∅.

The definition of safety of a controlled system is similar to
that of an autonomous system. To incorporate safety for the
nonlinear control system (1), we aim at finding controller
u and a control invariant set W , which includes I in its
interior and is a subset of the safe set S. In particular, W
and u fulfill:

R∞
f,u(W ) ⊆W, (2a)

R∞
f,u(I) ⊆W, (2b)

W ⊆ S. (2c)

Lemma 1. If there exits a set W and control input u ∈ U ,
such that conditions (2a)-(2c) hold for a vector field f(x, u),
then (1) is safe according to Definition 3.

We now define the notion of Control Barrier Certificates
(CBC) for finding a feasible candidate control invariant set,
and a controller according to condition (2).

Definition 4 (Control Barrier Certificates). Let a continuous
time control system denoted by ẋ = f(x, u), with initial set
I ⊆ Rn, safe set S ⊆ Rn, and input constraints U ⊆ Rm.
A C1 function B : Rn → R is called a Control Barrier
Certificate (CBC) if

B(x) < 0, ∀x ∈ S̄, (3a)

B(x) ≥ 0, ∀x ∈ I, (3b)

sup
u∈U

∂B(x)

∂x
f(x, u) > 0, ∀x ∈ ∂B. (3c)

Let

KCBC(x) :=

{ {
u|∂B(x)

∂x f(x, u) > 0
}
∩ U , if B(x) = 0

U , otherwise
(4)

denote the admissible set of control inputs for a CBC B(x).
Let B := {x|B(x) ≥ 0} denote the zero-super level set of
B(x). We then have the following result on safety.

Theorem 1. Consider (1), a safe set S and an initial set I .
If there exists a CBC B(x) that satisfies conditions (3), then
for any state x and any u ∈ KCBC(x), the safety of system
(1) is guaranteed.

Proof: Equation (3a) indicates that for any x ∈ S̄,
we have x ∈ B̄, thus B, which shows that condition (2c)
holds. Similarly, Equation (3b) demonstrates that I ∈ B.
Therefore, we only need to prove that R∞

f,u(B) ∈ B to show
conditions (2a) – (2b). We recall that under control input u,
the vector field f(x, u) is locally Lipchitz continuous, and
the solution is unique. This indicates that the flow ψ(x, t, u)
is continuous over t. Besides, the fact that B(x) is a C1



function guarantees that trajectories starting from Int(B)
to B̄ will cross ∂B. Thus, any bounded input u ∈ U at
x ∈ Int(B) = {x|B(x) > 0} shows the positivity of
B(ψ(x, t, u)) when t → 0. Regarding the boundary, for
any x ∈ ∂B, Ḃ(x) = ∂B(x)

∂x
dx
dt = ∂B(x)

∂x f(x, u) > 0 from
the definition of CBC. Thus, the vector field f(x, u) ∈
TangB(x) for x ∈ ∂B and u ∈ U . According to the
subtangenality Theorem [23], the set B is control invariant
with vector field f(x, u), which directly indicates that B is
control invariant. According to Lemma 1, B is a feasible
candidate control invariant set verifying the safety of the
control system (1).

Theorem 1 shows that the existence of a control Barrier
certificate B(x) ensures safety for safety-critical systems.
Meanwhile, the control admissible set (4) certifies the se-
lection of control effort. For problems that the control
Barrier certificate B(x) can be easily constructed and verified
through physical properties, one can formulate a quadratic
program to synthesize the safe controller u at x.

min
u

||u− u∗(x)||

s.t. u ∈ KCBC(x),
(5)

where u∗(x) is a nominal control input designed from other
tools, e.g. PID, MPC. We note here the formulation (5) is
different from that of CBF based QP. Here, in the interior of
the control invariant set B, the solution of (5) is the direct
projection from u∗(x) on the control admissible set U .

For the scenario where the control Barrier certificate is
unknown, the problem is to synthesise the control Barrier
certificates together with the safe controller design. To begin
with, B(x) is parameterized by

B(x) = p1Λ1(x) + . . .+ pkΛk(x), (6)

where p := {p1, . . . , pk} denotes a series of parameters
which will be decision variables in an optimisation problem,
and Λ1(x), . . . ,Λk(x) are a class of function basis. The
new optimisation problem for constructing the CBC and
controller is

find u(x), p

s.t. (6), (3);
u(x) ∈ KCBC(x).

(7)

Compared to quadratic programming (5) with known control
Barrier certificates, (7) is computationally intractable since
it involves solving an infinitely constrained optimisation
problem. We will show how to address this difficulty by
sum-of-squares programming in Section III.

III. COMPUTATION METHOD

In this section we show how to construct the control
Barrier certificates and the safe control law for polynomial
systems with semi-algebraic safe and initial sets. The non-
linear control affine system is represented by

ẋ = f(x) + g(x)u, (8)

where f(x) and g(x) are locally smooth polynomial func-
tions and u ∈ U := {u|Au+ b ≥ 0}.

Even for such a simplified system model, solving the
parametric optimisation problem (6) – (7) involves solving an
infinite set of non-negative inequalities and hence is compu-
tationally intractable. However, for systems with polynomial
functions f(x), g(x) and semi-algebraic sets I , S, a tractable
method for tackling the infinite inequalities is sum-of-squares
(SOS) programming, which is a convex relaxation method
based on the sum-of-squares decomposition of multivariate
polynomials and semidefinite programming.

A SOS program is a convex optimisation problem of the
following form:

min
p

k∑
j=1

wjpj

s.t. h0(x) +

k∑
j=1

pjhj(x) ∈ Σ[x],

(9)

where the decision variables p1, . . . , pk are real parame-
ters, and w1, . . . , wk are predefined weight constants. Also,
[h0(x), . . . , hk(x)] is a polynomial basis in x. A multivariate
polynomial s.t. h0(x) +

∑k
j=1 pjhj(x) with x ∈ Rn is a

SOS polynomial if there exists k polynomials f1(x) . . . fk(x)
such that f(x) =

∑k
i=1 f

2
i (x). Then it directly follows

that a SOS f(x) is non-negative for any x ∈ Rn. A SOS
program can be transformed into a semi-definite program
with f(x) = Z⊤QZ(x), where Q ⪰ 0 and Z(x) is a
monomial vector.

A. SOS for CBC Synthesis

To interpret the constraints (3) into SOS constraints,
we assume that the resulting control Barrier certificate is
a polynomial function parameterized by real coefficients
p1, . . . , pm in the following way

B(x) = p0 +

m∑
j=1

pjbj(x), (10)

where bj(x)s are polynomial or monomial function bases,
and p0 is a positive real scalar. Similarly, the control input
is parameterized by real scalar coefficients k1, . . . , kl, and a
real vector coefficient k0 ∈ Rm with

u(x) = k0 +

l∑
j=1

kjvj(x), (11)

where vj(x)s are polynomial or monomial vector bases. We
note here there the reason why we use the constant term
k0 is different from that of p0. From the view of control,
k0 introduces a feedforward term, which in some cases is
important for safety, for example at some singular points

where
l∑

j=1

kjvj(x) = 0.

Theorem 2. Consider a polynomial nonlinear system (8),
semi-algebraic safe set S = {x|s(x) ≥ 0}, initial set I =
{x|w(x) ≥ 0}, and control admissible set U := {u|Au+b ≥
0}, where A ∈ Rh×m, and b ∈ Rh. If there exit multipliers
σsafe ∈ Σ[x], σinit ∈ Σ[x], λ1 ∈ R[x], λ2 ∈ R[x]h,



polynomials B(x) ∈ R[x], u(x) ∈ R[x], predefined small
positive real scalars ϵ1 > 0, ϵ2 > 0, such that

−B(x) + σsafes(x)− ϵ1 ∈ Σ[x], (12a)
B(x)− σinitw(x) ∈ Σ[x], (12b)
∂B(x)

∂x
(f(x) + g(x)u(x)) + λ1B(x)− ϵ2 ∈ Σ[x], (12c)

− λ2B(x) +Au(x) + b ∈ Σ[x]h, (12d)

then B(x) fulfills the conditions (3) and B = {x|B(x) ≥ 0}
is a control invariant set with respect to vector field f(x) +
g(x)u(x).

Proof: Condition (12a) indicates that for any x,
−B(x) + σsafes(x) − ϵ1 ≥ 0, thus for any x, −B(x) +
σsafes(x) > 0. Therefore, for any x ∈ S̄, we directly
have that σsafes(x) ≤ 0, and further B(x) < 0, i.e., (3a)
holds. Similarly (12b) can be shown to satisfy (3b) following
the same arguments. Based on the S-procedure, condition
(12c) implies condition (3c), because when B(x) = 0,
∂B(x)
∂x (f(x) + g(x)u(x)) − ϵ2 ≥ 0, and thus B(x)

∂x (f(x) +
g(x)u(x)) > 0. Condition (12d) implies that Au(x) + b
is elementary-wise nonnegative for x ∈ ∂B. The small
positive real scalars ϵ1, ϵ2 ensure strict inequality for (3a)
and (3c).

We note that in Theorem 2 we only require a polyno-
mial multiplier λ, but not a SOS one since the condition
∂B(x)
∂x (f(x) + g(x)u(x)) ≥ 0 is only imposed on the

boundary B(x) = 0. Condition (12c) introduces products of
decision variables, i.e. λB(x), which results in bilinearity.
However, there is no guaranteed solver for nonconvex, or
specifically bilinear constrained SOS programs. Here, like
existing work of using SOS to synthesize Barrier certificates,
we use an iterative procedure for control Barrier certificate
synthesis and safe control law design. Different from the
iterative algorithm for Barrier certificate synthesis, our prob-
lem involves an additional polynomial variable u in the SOS
program. Thus, an additional round for controller synthesis
is required in our algorithm.

1) Initialization: We first fix the degree of polyno-
mials B(x), σsafe, σinit, λ1, λ2 and u(x). The polyno-
mial/monomial scalar/vector bases bj(x)s and vj(x)s in (10)
and (11) have degree upper bounded by the aforementioned
degrees of B(x). ϵ1 and ϵ2 are chosen to be small real
numbers. Unlike the iterative procedure proposed in [11]
which initializes the control law by a scaled LQR controller,
we find the initialized feasible control input u0(x) by solving
a feasibility SOS program.

find k1, . . . , kl, σcont

s.t. A(k0 +

l∑
j=1

kjvj(x)) + b · σcont ∈ Σ[x]h.
(13)

We note here that there is no assumed control Barrier
certificate B(x) at this stage of finding the initial feasible
control input u0(x). Therefore, u0(x) can not be restricted
to the domain of ∂B as that in (12d). Other than directly
interpreting A(k0 +

∑l
j=1 kjvj) + b ∈ Σ[x]h, we add an

additional positive multiplier σcont which satisfies σcont −
ϵ3 ∈ Σ[x], ϵ3 > 0 to avoid introducing constant terms in
the SOS constraints, as well as improving feasibility. The
resulting initial controller u0(x) is derived by the parameters
k1, . . . , kl and the scaled term σcont from the solution of (13)

u0(x) =
1

σcont
· (k0 +

l∑
j=1

kjvj(x)). (14)

The feasibility of such an initialized controller is guaranteed
by the following proposition.

Proposition 1. The initialized control input u0(x) in (14)
satisfies Au0(x) + b ≥ 0.

Proof: We have A(k0+
∑l

j=1 kjvj)+b·σcont ≥ 0 from
the SOS constraints A(k0 +

∑l
j=1 kjvj) + b · σcont ∈ Σ[x]h

in (13). Because of the positivity of the multiplier σcont, we
directly have A( 1

σcont
· (k0 +

∑l
j=1 kjvj)) + b ≥ 0, which

indicates u0(x) ∈ U .

Given initial input u0(x), the corresponding scaled multi-
plier σcont, the initial control Barrier certificate B0(x) can
be found by solving an initial feasibility SOS program as

find p0, . . . , pm, σsafe, σinit

s.t. −B(x) + σsafes(x)− ϵ1 ∈ Σ[x],

B(x)− σinitw(x) ∈ Σ[x],

σcont ·
∂B(x)

∂x
(f(x) + g(x)u0(x))− ϵ2 ∈ Σ[x],

B(x) from (10).

(15)

The boundary condition (12c) is strengthened to be
∂B(x)
∂x (f(x) + g(x)u(x)) − ϵ2 ∈ Σ[x] for convexity and

simplicity of computing. This condition is also referred to
be the weak Barrier certificate in [7]. σcont · ∂B(x)

∂x (f(x) +
g(x)u0(x)) − ϵ2 is guaranteed to be a polynomial, since
σcont · u0(x) is a polynomial.

After obtaining a feasible initial control input u0(x) and
control Barrier certificate B0(x), the problem of control Bar-
rier certificates synthesis can be regarded as a Barrier certifi-
cates synthesis problem with vector field f(x) + g(x)u0(x).
The multipliers λ01, λ02 are fixed to be 0 or 1 in initialization
for simplicity. The initial control Barrier certificate B0(x) is
used to enlarge the size of the control invariant set incremen-
tally. The following steps of the algorithm iteratively solve
the SOS program to address the bisecting terms λ1B(x) and
∂B(x)
∂x (f(x) + g(x)u(x)) in (12c).

2) Update the control input uk(x): At iteration k, given
a control Barrier certificate from (15) (when k = 1) or (17)
(when k ≥ 2), the controller synthesis is constrained to (12d).
Fixing B(x) = Bk−1(x), a convex programming synthesis



procedure for uk(x) is

find k0, . . . , kl, λ1, λ2

s.t.− λ2B
k−1(x) + A(k0 +

l∑
j=1

kjvj) + b ∈ Σ[x]h,

∂Bk−1(x)

∂x
(f(x) + g(x)u(x)) + λ1B

k−1(x)− ϵ2 ∈ Σ[x],

(16)

and we have that uk(x) = (k0 +
∑l

j=1 kjvj). Here we
use λ1 other than λk−1

1 since B(x) has been substituted by
Bk(x), thus there is no bilinear term anymore. By limiting
the domain of the controller to ∂B, there is no need to have
additional multiplier σcont as that has been used in initial
controller design for feasibility.

3) Synthesize the control Barrier certificate Bk(x): Af-
ter obtaining a feasible control input uk−1(x), the synthesis
of a control Barrier certificate Bk(x) relies on fixed multi-
pliers λk−1

1 , λk−1
2 to bypass the bilinear terms. Searching for

Bk(x) and the remaining multipliers follows the following
SOS program

find p0, . . . , pm, σsafe, σinit, σenl

s.t. −B(x) + σsafes(x)− ϵ1 ∈ Σ[x],

B(x)− σinitw(x) ∈ Σ[x],

∂B(x)

∂x
(f(x) + g(x)uk(x)) + λk−1

1 B(x)− ϵ2 ∈ Σ[x],

− λk−1
2 B(x) +Auk(x) + b ∈ Σ[x]h,

B(x)− σenlB
k−1(x) ∈ Σ[x],

B(x) in (10),
(17)

where σenl ∈ Σ[x]. Here the control law uk−1(x) is sub-
stituted for the variable u, and the multipliers λ1 λ2 are
substituted by λk−1

1 and λk−1
2 , respectively. We introduce

additional constraints B(x)−σenlBk−1(x) ∈ Σ[x] to enlarge
the volume of the control invariant set Bk by enforcing
Bk−1 ⊆ Bk. A similar technique is also used in [24].

4) Update the multipliers: The multiplier λk1 updates rely
on a fixed control Barrier certificate Bk(x) and input uk(x).
Clearly, there is no bilinearity in the control input update
procedure (16). The multipliers λk1 and λk2 are obtained by
directly solving it. There is no need to fix B(x) and re-solve
the programming problem.

Remark. For the case where (13) or (15) is infeasible,
there are two options for ensuring feasibility: (i) Increase
the degree of the polynomial bases v1, . . . , vl, b1, . . . , bm;
(ii) Re-solve the problem (13) with an alternative objective
function for a different initialization.

IV. SIMULATION RESULTS AND DISCUSSION

In this section we show numerical simulation results on
synthesizing control Barrier certificates and safe controllers
under different system settings. The SOS toolbox SOS-
TOOLS [25] [26] is used with version v401 for parsing the

SOS programs, while SeDuMi is used for solving the result-
ing semidefintie program [27]. We also give a comparison
between the CBC proposed in this paper and CBF mainly
from the view point of synthesis.

A. Nonlinear Control Affine Systems

We first consider a general second order polynomial non-
linear control affine system. This system is defined by[

ẋ1
ẋ2

]
=

[
x2

x1 +
1
3x

3
1 + x2

]
+

[
x21 + x2 + 1
x22 + x1 + 1

] [
u1
u2

]
, (18)

where the control input is box constrained, i.e. u1 ∈
[−1.5, 1.5], u2 ∈ [−1.5, 1.5]. The safe set is defined by a
disc S = {x|x21 + x22 − 3 ≤ 0}, and initial set defined by
I = {x|(x1 − 0.4)2 + (x2 − 0.4)2 − 0.16 ≤ 0}. We leverage
the control Barrier certificates synthesis procedures (12) to
find a polynomial CBC B1(x), and compare the results with
the CBF synthesis procedure proposed in [11]. To synthesize
a candidate CBF B2(x), an alternative constraint for (12c)
is introduced
∂B(x)

∂x
(f(x)+g(x)u(x))−σcbfB(x)+αB(x)− ϵ2 ∈ Σ[x],

(19)
where the class-K function is selected to be αB(x) with
α > 0, and σcbf ∈ Σ[x] is a SOS multiplier. Here we
restrict the definition domain for CBF to be B2. ϵ2 is set
to be the same with that in (12c). Instead of the feasibility
SOS program used for CBC, we set an objective function α
which is maximized for CBF as in [11].
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Fig. 1. Control invariant sets defined by CBC or CBF

Figure 1 shows the control invariant sets defined by CBF
and CBC. The red and light blue disc represent the safe and
initial sets, respectively. The interior of the deep blue curve
is the invariant set B2 defined by CBF, and the interior of the
black curve is the invariant set B1 defined by CBC. It can
be seen from the figure that B1 is “larger” than B2. Actually
we have B2 ⊂ B1, which is proved by there exists a SOS
multiplier σ, such that B1(x)− σB2(x) ∈ Σ[x]. The reason
is that, we trivially have σcbf + α ∈ R[x]. A larger search
area enables us to find a larger control invariant set. On the
other hand, the additional term λ1B1(x) can be regarded
as an adapted relaxation term compared with a fixed class-K



function used in CBF approach. By using a zeroth order base
for the polynomial multiplier λ1 and expanding the definition
domain of CBF to the whole real space, our formulation
is equivalent to CBF. Higher order basis selections hereby
reduce conservativeness.

Figure 2 shows the value of relaxation coefficient λ1 and
α. The multiplier λ1 includes the following monomial basis:
[x21, x1x2, x

2
2, x1, x2, 1]. It can be seen that λ1 varies in the

control invariant set, which therefore endows the formulation
flexibility. An interesting property here is that α cannot be
too large, this is because for x ∈ B̄1, αB2(x) < 0. In
addition, with a non-empty safe set S ⊂ Rn, we directly
have B1(x) /∈ Σ[x], and αB1(x) /∈ Σ[x].

Fig. 2. Relaxation coefficients λ(x) for CBC, and α for CBF

The control invariant set B1 obtained by CBC design and
values of the safe controllers are shown in Figure 3. The
vector field, which is represented by the arrows in Figure
3(a) point inside B1 on ∂B1. The value of the polynomial
control law u(x) is within [−1.5, 1.5] in both coordinates.

B. LTI Systems

Consider a second order linear model[
ẋ1
ẋ2

]
=

[
2 1
3 1

] [
x1
x2

]
+

[
u1
u2

]
, (20)

where u1 ∈ [−2.5, 2.5], u2 ∈ [−2.5, 2.5]. The system is

unstable since the eigenvalues of the state matrix
[
2 1
3 1

]
are 3.3 and −0.3, whereas it is locally stabilizable. The safe
set is defined by a disc S = {x|x21 + x22 − 3 ≤ 0}. The
trajectories of the system start from the following initial set
I = {x|(x1 − 0.4)2 + (x2 − 0.4)2 − 0.16 ≤ 0}. Clearly, all
trajectories starting from the initial set tend to infinity, since
the system is unstable. Safety is therefore violated with a
closed safe region set.

Using a second degree basis [1, x1, x2, x1x2, x
2
1, x

2
2], a

feasible candidate CBC is given by B1(x) = −7.635x21 −
3.439x1x2 − 3.4024x22 + 0.5x1 − 0.4x2 + 7.402. The cor-
responding control inputs lying inside [−2.5, 2.5] when
x ∈ ∂B1 are u1(x) = −2.32x1 − 1.11x2 + 0.022,
u2(x) = −2.12x1 − 1.27x2 − 0.046. Obviously u1(x)
and u2(x) are admissible only within some local regions.

More specifically, within B1. We can show the boundary
condition ∂B1(x)

∂x (f(x) + g(x)u(x)) + λ1B1(x) − ϵ2 ≥ 0

holds by exploiting the SOS decomposition ∂B1(x)
∂x (f(x) +

g(x)u(x)) + λ1B1(x)− ϵ2 = Z(x)⊤QZ(x), where Z(x) =
[1, x1, x2, x1x2, x

2
1, x

2
2]

⊤ and Q ⪰ 0.
Figure 4(a) shows the zero level set of the quadratic CBC

B1(x). With controller u1(x) and u2(x), vector field in (20)
guarantees safety with avoiding the unsafe set. For this case,
the system admits an ellipsoidal control invariant set. The
level sets of u1(x) and u2(x) are shown in Figure 4(b)-4(c).
It can be seen that u(x) ∈ U for any x ∈ B1.

C. Comparison with Control Barrier Functions

We end this section by a brief comparison between CBF
and CBC.

From the point of view of set invariance, the zero-super
level set of both CBC and CBF are control invariant. CBC,
which is a direct interpretation of control invariance to ensure
safety, takes initial conditions into consideration as well -
without initial conditions, the CBC formulation is equivalent
to CBF. Although the definition of CBF involves the exis-
tence of a class-K function, this, however is a straightforward
property that holds for both CBC and CBF.

From the aspect of controller design, the CBF-QP ap-
proach relies on a given safe control invariant set, which is
free for our approach (7). For the case where the control in-
variant set is constructed a priori, although the CBF approach
endows Lipschitz continuity for the resulting controller, it
also introduces unnecessary conservativeness since Ḃ2(x) is
bounded by a fixed additional relaxation term. Although there
are existing works propose to tune the relaxation coefficient
α online [14], additional computational complexity and
necessary cost trade-off are also introduced. Our approach
(5), on the other hand, is less restricted with an adapted
relaxation coefficient λ1. For systems with mode switching
such as power systems, formulation (5) ensures safety. For
continuous controller synthesis, we can also formulate a QP
with using λ1B1(x) as a relaxation term

min
u∈U

||u− u∗(x)||

s.t.
∂B1(x)

∂x
(f(x) + g(x)u) + λ1B1(x) ≥ 0,

(21)

we recall here λ1 is a polynomial of x, the argument is
dropped for simplicity.

V. CONCLUSION

In this paper we investigate the problem of safety verifi-
cation and controller design for safety critical systems. Our
approach depends on the evaluation of a control invariant set
which encloses the initial set whereas avoiding the unsafe set.
We prove that the existence of a control invariant set inside
the safe region is sufficient for safety of nonlinear control
systems. The formulation only imposes boundary conditions,
thus alleviating conservatism. For polynomial systems with
semi-algebraic initial and safe sets, we propose an iterative
procedure with using SOS program to synthesize the CBC
with encoding general affine control limits. We also show



(a) Phase portrait for the system (18)
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Fig. 3. The interior of the red disc represents the safe set, the interior of the blue disc represents the initial set from which the trajectories start. The
black closed curve encircling the initial set is the control invariant set, defined by the super-zero level set of B1(x). The arrows in the figure represent the
vector field. The colorful lines are the trajectories starting from ∂B1.
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Fig. 4. The safe and initial set are defined to be the same as in Figure 3. Safety is ensured with the polynomial control law.

that CBC has less conservativeness compared with CBF from
numerical simulations. In the future we aim at extending the
formulation to discrete time systems.
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