
Safety-Aware Optimal Control for Motion Planning with Low
Computing Complexity

Xuda Ding1∗, Han Wang2∗, Jianping He1, Cailian Chen1, Kostas Margellos2, Antonis Papachristodoulou2

Abstract—The existence of multiple irregular obstacles in the
environment introduces nonconvex constraints into the optimiza-
tion for motion planning, which makes the optimal control
problem intractable. One efficient approach to address this issue
is Successive Convex Approximation (SCA), where the nonconvex
problem is convexified and solved successively. However, this
approach still faces two main challenges: i) infeasibility, caused
by linearisation about infeasible reference points; ii) high compu-
tational complexity incurred by multiple constraints when solving
the optimal control problem with a long planning horizon and
multiple obstacles. This paper propose a energy efficient safety-
aware control method for motion planning with low computing
complexity and address these challenges. Specifically, a control
barrier function-based linear quadratic regulator is formulated
for the motion plan to guarantee safety and energy efficiency.
Then, to avoid infeasibility, Backward Receding SCA (BRSCA)
approach with a dynamic constraints-selection rule is proposed.
After that, dynamic programming with primal-dual iteration
is proposed to decrease computational complexity. Moreover, it
is found that the proposed BRSCA approach is applicable to
time-varying control limits. Numerical simulations and hardware
experiments demonstrate that BRSCA has a higher probability
of finding feasible solutions, reduces the computation time by
about 17.4% and the energy cost by about four times compared
to other methods in the literature.

I. INTRODUCTION

Motion planning is critical for robotics since it provides
fundamental movement guidance. Many efforts are proposed
to perform an efficient and collision-free plan. The existing
motion plan approach can be grouped into two categories
[1], i.e., graph search approaches and trajectory optimization
approaches. Graph search approaches [2] [3] are widely used
in 2-D scenarios by discretizing the working space and ef-
ficiently finding collision-free trajectories. When applied to
high-dimensional spaces, these approaches often encounter
real-time problems since the search space is enormous. To deal
with real-time problems, Rapidly-Exploring Random Trees
(RRT) [4], [5] and Probabilistic Road Map (PRM) [6] with
pruning technique are proposed. The randomized methods are
probabilistically complete, which means they may take a long
time to achieve asymptotic optimality. Optimization method-
ologies are proposed to achieve optimality, which also scales
well with the state space dimension. However, the long time
horizon and the nonconvex collision avoidance constraints
make the formulated optimization problem nonconvex [7],

∗Co-primary authors
1The authors are with the Department of Automation Shanghai

Jiao Tong University, Shanghai, China. E-mails: {dingxuda,
jphe,cailianchen}@sjtu.edu.cn

2The authors are with the Department of Engineering Science, Uni-
versity of Oxford, Oxford, United Kingdom. E-mails: {han.wang,
kostas.margellos, antonis}@eng.ox.ac.uk

[8], and hence intractable. Even a feasible solution is hard
to be determined with a nonlinear optimization solver like
Sequential Quadratic Programming (SQP) [9]. To overcome
nonconvexity, two different approaches have been proposed.

The first involves partitioning the safety region into a series
of convex regions. It has been proposed to use polyhedra for
the region generation, and then the trajectory optimization
was formulated as a mixed-integer programming problem [10]
[11]. Polynomials and splines were also considered in more
recent works [12] [13]. These approaches are highly efficient
for finding a feasible trajectory without considering system
dynamics and controller design, i.e., stability and optimal
energy consumption.

The second stream of methods gradually convexifies the
nonconvex collision avoidance constraints via linearisation.
This type of approach was firstly proposed for the Differ-
ence of Convex Programming (DCP) problems [14]. These
approaches split the nonconvex function into the difference of
two convex parts, then successfully convexify the constraints’
nonconvex parts via linearisation about a reference point, thus
termed Successive Convex Approximation (SCA). Variations
of such approaches are proposed in the optimization com-
munity in the realm of the convex-concave procedure [15].
This efficient reformulation has been widely used in many
recent optimization-based works, e.g., [16]–[18]. Although
mathematically rigorous, the SCA still faces critical issues in
real applications. The first one is that a feasible initial guess is
required. Slack variables are used to relax this issue [15], but
it still lacks a theoretical guarantee. The second issue is that
the search space is prone to be empty due to the presence of
a high number of constraints. An incremental SCA (iSCA)
approach has been proposed, which incrementally includes
the violated constraints into the optimization problem and
guarantees a lower computation complexity [19]. However,
in some multi-constraint scenarios, the trajectory calculated
by iSCA is infeasible. The reason is that the convexification
around infeasible reference points possibly renders the convex
search spaces infeasible.

To design stable and optimal control laws for safe motion
planning, model predictive control (MPC) and optimal control
with collision avoidance constraints (such as QP-based control
barrier function approach) are widely investigated [5], [20].
Modern nonlinear solvers enable us to reformulate the problem
into a generalized optimization problem with an equality con-
straint (system dynamics) and inequality constraints (collision
avoidance and input limits). The computational complexity of
such a problem grows quadratically with the length of the
planning horizon and the number of obstacles [21]. So even a

linear quadratic regulator (LQR) model with multiple convexi-
fied constraints is challenging. Many efforts have been made to
solve this problem with multi-parametric optimization, which
partitions the state space and substitutes multiple constrained
LQR sub-problems for the original problem [22]–[24]. Re-
cently, [25] proposed a density function-based approach that
generates a control law for whole state space, whereas the
approach requires solving complicated, ordinary differential
equations in every iteration.

Inspired by the previous studies, in this paper, we aim to
design stable and optimal control laws for safe motion plan-
ning with low computation complexity. This paper proposes a
novel primal-dual framework for solving the LQR with CBF
constraints through backward recursion to obtain a safe and
optimal motion plan in a long horizon. First, we formulate
an LQR considering the system dynamic with zeroing barrier
function to guarantee safety. The obstacles are considered
nonconvex constraints. Then, all the nonconvex constraints
are convexed with the proposed Backward Receding SCA
(BRSCA) scheme to reduce the computing complexity. The
original problem is transformed into a convex QCQP. The
proposed approach provides an explicit solution for the optimal
cost-to-go and the control law. Time-varying control limits are
also considered in the controller synthesis. Our work provides
a solution for the sub-problem in [26]. This work is mainly
related to the recent constrained differential dynamic program-
ming approach [27] [28]. Unlike lifting the constraints into
the cost with barrier functions, we model the constraints in a
hard manner. In addition, our method is especially suitable for
linear systems, as the cost-to-go can be accurately modelled.
The contributions can be summarised as follows:

• To obtain a feasible solution for the safety-aware op-
timal control problem with nonconvex constraints, we
propose a novel BRSCA approach to deal with infeasible
reference points and provide acceleration mechanisms.
The proposed BRSCA approach guarantees the feasibility
when solving a CBF-based QP in a long time horizon.

• To ensure efficiency in solving the safety-aware optimal
control problem, we propose a primal-dual framework
for solving convex-constrained LQR, with closed-form
solutions for the optimal cost-to-go and the control law.

• We demonstrate higher computational efficiency and suc-
cess rate of our method against five solvers and five
planning methods through a detailed numerical study and
real-world implementation.

The rest of this paper is organized as follows. Section II
formulates the optimal control problem with constraints and
provides the definition of a semi-convex function. BRSCA for
convexifying the original problem is presented in Section III.
A primal-dual approach is shown in Section IV. Section V
presents the numerical simulations and hardware implemen-
tations. Section VI concludes the paper and provides some
directions for future work.

II. PROBLEM FORMULATION

Consider a robot with a configuration xt ∈ X ⊆ Rn in
a safe set X [29], where Rn is the n-dimensional Euclidean
space. The robot dynamics is modelled as the following

xt+1 = Axt +But, (1)

where ut ∈ Ut ⊂ Rm denotes the control input, Ut is the time-
varying allowable control set. A ∈ Rn×n is the state transition
matrix, and B ∈ Rn×m is the input matrix. Assume that A
and B are known, and (A,B) is stabilizable. The objective is
to synthesize an optimal control law along with an optimal
trajectory for a single robot. To avoid collision, all states
{x0, . . . , xt, . . .} should be within a safety set X defined by
the zeroing barrier function proposed in [29]. Suppose there
exist a series of functions hi : Rn → R:

X = ∩i∈I{x ∈ Rn|hi(x) ≥ 0},
∂X = ∪i∈I{x ∈ Rn|hi(x) = 0},

Int(X) = ∩i∈I{x ∈ Rn|hi(x) > 0},
X̄ = ∪i∈I{x ∈ Rn|hi(x) < 0},

(2)

where ∂X represents the boundary of safety set, Int(X) and
X̄ are the interior and complementary set of X , respectively.
A sequence of functions h1(x), . . . , hI(x) can be used to
establish the safety set and obstacle descriptions where every
obstacle is specified by a unique index in I. With a slight
abuse of notation, let the subscript I represent the last index.
Assume all these sets are smooth, compact, and semi-convex.

Definition 1 (Semi-convex). A function hi is said to be semi-
convex if there exists a positive semidefinite matrix Hi ∈ Rn×n

such that the function h̃i(x), satisfying

h̃i(x)
∆
= hi(x) + Hi(x, x0), (3)

is convex for any x0 ∈ Rn, where

Hi(x, x0) :=
1

2
(x− x0)

⊤Hi(x− x0) (4)

is a quadratic function with respect to x0.

Assumption 1. All functions {−h1(x), . . . ,−hI(x)} in (2)
are semi-convex. The robot is aware of the shape expression
hi for every obstacle, i = 1, . . . , I.

We note here we assume −hi(x) is semi-convex but not
hi(x), since the collision-free constraints can be reformulated
as −hi(x) ≤ 0.

Remark. Semi-convex obstacles are quite common in prac-
tice. Roughly speaking, for every feasible state, if there exists
a convex quadratic closure that covers it without intersecting
with the obstacle, we say the function corresponding to the
obstacle is semi-convex. Nonconvex obstacles can often be
approximated/decomposed as the union of convex quadratic
closure [30].

Unlike QP-based control barrier function approaches, which
only depend on the current state, we focus here on transform-
ing the problem into an optimal control problem with collision
avoidance constraints at every time instant.

min
u∈Rn

J(u) = xT
⊤PxT +

T−1∑
t=0

xt
⊤Qxt + ut

⊤Rut, (5a)

s.t. xt+1 = Axt +But, t = 0, . . . , T − 1, (5b)
hi(xt) ≥ 0, t = 1, . . . , T − 1, i ∈ I, (5c)
Gt(ut) = Gtut + et ≤ 0, t = 0, . . . , T − 1, (5d)

where J denotes the energy cost, P ⪰ 0 denotes the terminal
cost function, Q ⪰ 0 and R ≻ 0 denote the state and input
weights, respectively. (A,

√
Q) is detectable and Gt(ut) ≤ 0

formulates the time-varying control admissible set Ut (where
Gt ∈ Rs×n, et ∈ Rs). Note that the terminal term xT

⊤PxT is
used to reach and stabilize around the equilibrium. The length
of the horizon T depicts the trade-off between computational
complexity and conservatism.

Moreover, the obstacles are detected by a centralized per-
ception unit in practice. The shape functions of the obstacles
can be regressed by sampling the obstacles’ shapes. Such
procedures are broadly used in graph search methods. When
only onboard sensors are used for detecting the obstacles, the
constraints for (5) are not complete. Thus, the optimality of
motion planning is not guaranteed.

As mentioned in our motivation, our goal is to solve the
constrained problem (5) explicitly. The main challenges here
are twofold: the constraint set hi(xt) ≥ 0 makes it hard to
leverage dynamic programming to construct a backward iter-
ative law, and the constraint function hi(xt) is not necessarily
convex.

III. BACKWARD RECEDING SCA

This subsection introduces the BRSCA approach. Unlike
iSCA, BRSCA checks the feasibility of all constraints and
includes only the violated ones in the problem to guarantee the
feasibility of the optimization problem with multi-constraint.

A. SCA

SCA was proposed for nonconvex collision avoidance con-
straint hi(x0) ≥ 0 about state x0. The principle of SCA is
to split the nonconvex function into the sum of a convex
and a concave function and successively linearise the concave
one about the current state. We can obtain the summation of
the convex and concave parts by exploiting semi-convexity.
Consider one nonconvex function hi(x) with reference point
x0. Then the explicit expression of one convexified candidate
ĥi(x) takes the form

ĥi(x) = −hi(x0)−∇hi(x0)
⊤
(x− x0)︸ ︷︷ ︸

linearized concave part

+Hi(x, x0)︸ ︷︷ ︸
convex part

.
(6)

Lemma 1. Assume that ĥi(x) is convex, then the safe set
defined by {x| − ĥi(x) > 0} is a subset of that defined by
{x|hi(x) > 0}, and −ĥi(x) ≤ hi(x),∀x ∈ Rn.

Proof. By Definition 1, hi(x) + Hi(x, x0) is convex since
hi(x) is assumed to be semi-convex. Hence we can substitute

−hi(x)− Hi(x, x0) + Hi(x, x0) < 0 (7)

Algorithm 1: BRSCA algorithm
Input: length of planning horizon T , safe set X ,

initial start point x0, end point xT , trajectory
{x0

0, . . . , x
0
T } solved from (5) without collision

free constraints
Output: optimal control law u∗, optimal cost value

J∗(u∗).
1 while ∃i, t, hi(x

k
t) ≤ 0 do

2 include the violated constraints hi(x
k
t) ≤ 0.

3 while J(uk+1) < J(uk) do
4 for all the non-violated constraints hj(x

k
t) > 0

do
5 convexify (5c) according to (6)
6 end
7 for all the violated constraints hj(x

k
t) > 0 do

8 convexify (5c) according to (6) with the
closest backward feasible state xk

t̂
as the

new reference point x0, i.e.
t̂ = argmint̂(hi(x

k
t̂
) > 0), t̂ < t

9 end
10 solve u∗, J∗(u∗), and the new

{xk+1
0 , . . . , xk+1

T }
11 end
12 end

for the safe constraint −hi(x) < 0. Note that −hi(x) −
Hi(x, x0) and Hi(x, x0) are concave and convex, respectively.
By the definition of convexity, we obtain:

hi(x)− hi(x0) ≥ −Hi(x, x0) +∇hi(x0)(x− x0), (8)

which implies that

hi(x) ≥ hi(x0)− Hi(x, x0) +∇hi(x0)(x− x0) = −ĥi(x),
(9)

i.e., −ĥi(x) ≤ hi(x) holds. Besides, since Hi(x, x0) is convex
and −hi(x)−∇hi(x0)

⊤(x−x0) is affine, ĥi(x) is convex.

We obtain the convexified expressions for each constraint
through convexification (6). However, when the amount of
obstacles is large, the search space can be highly limited, and
even the feasibility of the problem is not guaranteed.

B. BRSCA

We propose a further variation to SCA based on a backward
receding scheme, shown in Algorithm 1, to enlarge the feasible
search space, as well as increase the success rate. The QP is
with O(T Î) inequality constraints in iSCA, where T is the
number of discretization steps and Î is the number of the
constraints included in the algorithm. It should be noticed that
Î is less than the number of the obstacle I. The runtime of
the BRSCA is O(T 2Î2) [19].

Remark. Step 3 of Algorithm 1 is similar to iSCA in that the
constraints are included dynamically. Only violated collision

avoidance constraints are included in the constrained LQR
problem, while we only consider the included constraints in
the problem. Steps 4 - 8 of Algorithm 1 show the BRSCA. Here
we introduce a novel approach of using the convexified search
space about the closest backward feasible state, instead of
that about an infeasible state. This efficient rule eliminates the
feasible initial guess requirement of the iSCA, and reduces the
number of the iteration and computing complexity. In step 10
we solve the constrained LQR problem for optimal control law
u∗ = {u∗

0, . . . , u
∗
T−1} and obtain the corresponding trajectory,

and the optimal cost value J∗(u∗).

Figure 1 shows the convex search space about the violated
reference point x̂1 for a semi-convex obstacle. After including
the constraints about x̂1 and convexifying those via the search
space of the closest feasible backward point x0, we re-solve
the problem and acquire the new trajectory (denoted by the
red line), which is feasible at x1, while the previous trajectory
(denoted by the dotted line) is infeasible at x̂1.

In the sequel, we show how to solve the constrained LQR
problem in Step 10 efficiently.

IV. PRIMAL-DUAL CONTROLLER SYNTHESIS

After convexifying all the nonconvex constraint functions
via (6), we reformulate (5) into a convex QCQP by convexi-
fying (5c) with

fi(xt) = xt
⊤Hixt + ci|t

⊤xt + di|t ≤ 0, t ∈ T , i ∈ It,
c⊤i|t = −∇hi(x

k
t)

⊤ − (xk
t)

⊤Hi,

di|t = −hi(x
k
t) +∇hi(x

k
t)

⊤xk
t +

1

2
(xk

t)
⊤Hix

k
t ,

(10)

where T , It represent the time and index set of the included
constraints, respectively. xk represents the k-th solution in Step
11 of the Algorithm 1. For brevity, we omit the index k in
(10). In the sequel, xk is used as the k-th primal variable in
the primal-dual iteration.

A. Lagrangian Duality Formulation

To solve (5) with the convexified constraints (10), consider
the Lagrangian L(u, λ, µ):

L(u, λ, µ) = J(u) +

T−1∑
t=1

∑
i∈It

λi|tfi(xt) +

T−1∑
t=1

µt
⊤Gt(ut),

(11)
where λt|i ∈ R+ and µt ∈ Rs

+ are the dual variables. u, λ,
and µ are vectors consisting of ut, λi|t, and µt, respectively.
Accordingly, the dual function D(λ, µ) is defined as

D(λ, µ) = inf
u

L(u, λ, µ). (12)

Then, from the duality theory [31], we have that

sup
λ≥0,µ≥0

D(λ, µ) ≤ inf
u

J(u). (13)

We now present the optimality condition derived from the
KKT conditions and strong convexity propositions.

Fig. 1: A demonstration of forming the convex search space
and the new trajectory

Proposition 1. Suppose Slater’s condition holds, i.e., there
exists a series of inputs ũ such that x⊤

t Hixt+c⊤i|txt+di|t < 0
and Gtũt + et < 0. Then there exists an optimal control law
u∗
t (xt, λ

∗, µ∗) associated with dual variables λ∗, µ∗, which
are defined as the maximum of Lagrangian D(λ, µ):

λ∗, µ∗ = argmax
λ≥0,µ≥0

D(λ, µ). (14)

Moreover, the following conditions hold:
1) Duality gap is zero:

L(u∗, λ∗, µ∗) = minu L(u, λ
∗, µ∗) = D(λ∗, µ∗);

2) Inequality constraints (5d) and (10) hold;
3) Complementary slackness holds:

λ∗
i|tfi(x

∗
t) = 0, ∀t ∈ T , i ∈ It;

µ∗
tGt(u

∗
t) = 0, t = 0, . . . , T − 1.

Proof. 1) follows from the standard duality theorem, while 2)
and 3) come from KKT conditions.

B. Primal-Dual Approach

A primal-dual approach is used to solve the constrained
LQR problem. The dual function D(λ, µ) is concave in λ and
µ. The gradient expressions ∇D(λi|t) and ∇D(µt) are:

∇D(λi|t) = xt
⊤Hixt + ci|t

⊤xt + di|t,

∇D(µt) = Gtut + et.
(15)

Algorithm 2 shows the primal-dual approach for solv-
ing the constrained LQR. The step sizes αk fulfill that i)∑
k→∞

αk → ∞; ii)
∑

k→∞
(αk)

2
< ∞. Then through the conver-

gence results of the dual ascent method, [uk, λk, µk] converge
to the saddle point of L(u, λ, µ) with sublinear convergence
rate O(k) [31], [32].

The quadratically convexified constraints enable us to solve
the optimization sub-problem in Step 2. An explicit minimum
can be derived through dynamic programming with every
specific dual variable since there are no additional constraints
other than system dynamics constraints in the sub-optimization
problem.

C. Optimal Safety-Critical Control Laws

The solution to the optimization sub-problem in step 2 of
Algorithm 2 is shown in this subsection. The analysis uses the
Hamilton-Jacobi-Bellman (HJB) equation and the Pontryagin
Minimum Principle. We first define the auxiliary quadratic cost
matrix

Qλ|t
∆
= Q+

∑
i∈It

λi|tHi. (16)

where Qλ|t ⪰ 0 since Q ⪰ 0 and Hi ⪰ 0.
For simplicity of notation in the sequel, the following

substitutions are used

Λt =

[
λ1|t · · · λIt|t

λ1|t · · · λIt|t

]⊤
,

Ct = [c1|t, . . . , cIt|t]
⊤, dt = [d1|t, . . . , dIt|t]

⊤,

where λt = [λ1|t, . . . , λIt|t]
⊤. J(u) in (5a) is replaced by

J(u, λ, µ) with (10):

J(u, λ, µ) = gT (x, λ) +

T−1∑
t=0

gt(x, u, λ, µ), (17)

where the terminal term gT and interval term gt are defined
from (11):

gT (x) = xT
⊤PxT ,

gt(x, u, λ, µ) = xt
⊤Qλ|txt

⊤ + C⊤
t Λtxt + λt

⊤dt

+µ⊤
t (Gtut + et) + ut

⊤Rut.

(18)

The quadratically convexified constraints enable us to ex-
ploit closed-form expressions for both minimum and optimal
control law. Let Vt

∗(x, λ, µ) denote the optimal cost-to-go
with dual variables λ, µ at time t:

Vt
∗(x, λ, µ)

∆
= min

u
gT (x) +

T−1∑
k=t

gk(x, u, λ, µ). (19)

We note here that the control admissible set Ut and the state
admissible set X are not included here since these constraints
have been lifted into the objective function. The minimum is
always attained since J(u, λ, µ) is convex over u. An explicit
expression of cost-to-go function Vt

∗(x, λ, µ), and optimal
control law ut

∗(x, λ, µ) via dynamic programming with fixed
dual variable λ and µ is given in Theorem 1.

Theorem 1. With fixed dual variables λ, µ, for t ≤ T − 1
the closed form expression of the optimal cost-to-go function
Vt

∗(x, λ, µ) is expressed as:

Vt
∗(x, λ, µ) = xt

⊤Ftxt + St
⊤xt + rt. (20)

Moreover, the optimal control law associated with the dual
variables λ, µ is given by:

u∗
t (x, λ, µ) = −ktx+ lt. (21)

The discrete-time backward recursions through dynamic
programming are given by:

Ft−1 = −A⊤FtBM−1
t−1B

⊤FtA+Qλ|t +A⊤FtA,

S⊤
t−1 = C⊤

t−1Λt−1 + S⊤
t A

− (S⊤
t B + µt−1Gt−1)M

−1B⊤Ft
⊤A,

rt−1 = λt−1
⊤dt−1 − µt−1et−1 + rt,

Mt−1 = B⊤FtB +R,

kt−1 = M−1
t−1B

⊤F⊤
t A,

lt−1 = M−1
t−1(B

⊤St +G⊤
t−1µt−1),

(22)

with terminal conditions FT = P , ST = 0, rT = 0.

Algorithm 2: Primal-dual approach for convex con-
strained LQR
Input: initial multiplier λ0 ≥ 0, µ0 ≥ 0, a series of

step-sizes αk, tolerance ϵ
Output: multiplier λk, µk

1 while ||J(uk+1)− J(uk)|| > ϵ do
2 solve uk+1 = argmin

u
L(u, λk, µk), s.t. (1)

3 update the multiplier λk+1
i|t and µk+1

t according to
(15): λk+1

i|t = [λk+1 + αk∇D(λk
i|t)]+,

µk+1
t = [µk + αk∇D(µk

t)]+ for each
t ∈ T , i ∈ It

4 end

Proof. Since Qλ−Q ⪰ 0, and (A,
√
Q) is detectable, the pair

(A,
√
Qλ) is also detectable. Under the assumption that (A,B)

is stabilizable, the optimal cost-to-go is finite, and the optimal
control law can stabilize the system. We can then assume that
the optimal cost-to-go function V ∗

t (x, λ, µ) takes the quadratic
form x⊤

t Ftxt + S⊤
t xt + rt. By the HJB equation for a finite

time objective, we have:

xt
⊤Ftxt + St

⊤xt + rt =

min
u

[xt−1
⊤Ftxt−1 + St−1

⊤xt−1 + rt−1 + gt(x, u, λ, µ)].

(23)

Setting the derivative of u over t to zero yields (21). Substitut-
ing the optimal control law in (21) for ut in (23), and noticing
that the quadratic, linear and constant terms are the same for
both sides of the equation, results in (22).

Theorem 1 presents the discrete recursive law for the
constrained LQR with fixed λ and µ. The method for fixing
λ and µ is shown in Subsection IV-B.

Proposition 2. Suppose that all the constraints are inactive
within time interval [k, T], then the optimal control law sim-
plifies into u∗

t (x, 0, 0) = −(R + B⊤Ft+1B)−1B⊤Ft+1Axt,
where Ft+1 is the solution of the algebraic Riccati equation
Ṗ + PA+A⊤P − PBR−1B⊤P −Q = 0 at time t+ 1.

Proof. When all the constraints are inactive, the states
{xk, . . . , xT } satisfy the inequality constraints strictly. There-
fore, from Proposition 1, the corresponding dual variables
satisfy {λk = 0, µk = 0, . . . , λT = 0, µT = 0}. We then have
Qλ|t = Q,∀t ∈ [k, T] in (22), which immediately implies
that the dynamics of Ft are given by the standard algebraic
Riccati equation. Hence, S⊤

T = 0, S⊤
T−1 = C⊤

t−1Λt−1+S⊤
t A−

(S⊤
t B+µt−1Gt−1)M

−1B⊤Ft
⊤A = 0, . . . , S⊤

k = 0. With the
recursive law we can see that St = 0,∀t = k, . . . , T .

Proposition 2 gives a theoretical illustration of what happens
when the state enters the invariant set. In this case, the residual
problem can be solved using unconstrained LQR. This is the
backbone of solving the infinite horizon-constrained LQR. We
then immediately prove that for any λ, µ ≥ 0, the optimal law
(21) stabilizes the system.

Fig. 2: Comparison between BRSCA and nonlinear solvers,
iSCA with five obstacles in numerical simulation

Theorem 2. For the given fixed dual variables λ, µ, the
control law u∗

t (xt, λ, µ) stabilizes the system.

Proof. Since Qλ ⪰ Q and (A,
√
Q) is detectable, the pair

(A,
√
Qλ) is also detectable. The feedback quantity kt of the

control law u∗
t (x, λ) is −(R+B⊤Ft+1B)−1B⊤Ft+1A. This

implies that the spectral radius ρ(A + BK) < 0 proves the
asymptotic stability of the closed-loop system.

V. SIMULATION & EXPERIMENT

In this section, we verify the proposed method through the
following: i) the effectiveness of the algorithm in terms of
the trajectory’s feasibility and stability of the equilibrium; ii)
the computation time compared to that of nonlinear solvers,
i.e., interior-point (Ipopt), SQP, SQP-legacy (SQP-L), active-
set (act-set), and iSCA; the computation time compared to that
of motion planners, i.e., RRT*, control-based RRT (C-RRT),
PRM, A* and Hybrid A* (H-A*). iii) feasibility comparison
with the above solvers and energy cost comparison with the
above planners.

We consider three sets of experiments. In the first and
second sets, we consider scenarios with 5 and 15 random
irregular-shaped semi-convex obstacles along with a 100-
length planning horizon for numerical verification. In the third
set, we test our method with an Omnidirectional robot on the
testbed [33] to verify the effectiveness in practice. The testbed
involves seven irregular-shaped obstacles. The robot’s goal is
to reach the endpoint stably without colliding with the obstacle
and minimize the energy cost. The solvers are used to compute
the control input directly. The planners are used to generate the
reference trajectories. Then a P-controller is used to compute
the control input.

All numerical experiments are performed in MATLAB on
a computer with an Intel(R) Core(TM) i9-9980XE CPU,
3.00GHz processor and 64GB RAM. The hardware implemen-
tation on the testbed is performed with the Robopheus reality
testbed [33].

A. Numerical Simulation

In the first scenario, the workspace is a 4 × 4 square with
five irregular-shaped obstacles randomly placed inside. The
obstacle coverage rate is 44.3% at the central area (from [1.15,

Fig. 3: Comparsion between BRSCA and planners with five
obstacles in numerical simulation

0.3] to [3.36, 3.6]). The tolerance ϵ in Algorithm 2 is ϵ = 0.7.
The length of the planning horizon is set to 100. The start
point is [4, 3.6], and the desired endpoint is [0, 0]. The control
input is bounded by a box constraint [−0.7, 0.7] on both x
and y directions. The trajectory and speed calculated by the
proposed method are shown in Fig.2 and Fig.3.

In Fig.2, the active-set solver is the only method that pro-
duced a collision-free trajectory among the nonlinear solvers
used. Our method also results in a collision-free trajectory,
with a much smaller cost (96.02 compared to 283.96 of the
trajectory returned by the active-set solver). The iSCA is
infeasible at some points. Details of infeasibility are shown in
the magnification, where the dot, red, and coloured line denote
the trajectory of iSCA, the boundary of the obstacle and the
trajectory of BRSCA, respectively. As discussed, infeasibility
is caused by possible linearisation about included infeasible
points. In Fig.3, all the planners produced collision-free trajec-
tories. The RRT* has the shortest computing time with 0.068s
(compared to 0.74s of the BRSCA). However, the costs of the
planners are much more than the proposed BRSCA. BRSCA
reduces the energy cost by at least 449.78% compared to other
planning methods. The detailed comparisons of computing
time, cost and collision-free rate of the BRSCA and the
planners are shown in Tab.I. The collision-free rate is defined
as the number of the collision-free trajectory against the total
number of the trajectory.

In the second scenario, all the settings are the same as
those of the first scenario, except that the number of obstacles

TABLE I: Computing time, cost and collision-free rate of
different planners

BRSCA RRT* C-RRT PRM A* H-A*

Time
(5 Obs) 0.74 0.068 1.40 0.14 1.97 1103.97

Time
(15 Obs) 1.36 0.061 0.42 0.14 1.93 157.79

Cost
(5 Obs) 96.02 431.88 1739.0 465.95 470.96 666.60

Cost
(15 Obs) 96.78 478.78 2011.3 497.93 449.28 678.74

Collision
free rate 100% 100% 50% 100% 50% 100%

Fig. 4: Comparsion between BRSCA and nonlinear solvers,
iSCA with 15 obstacles in numerical simulation

Fig. 5: Comparsion between BRSCA and planners with 15
obstacles in numerical simulation

is 15. Two obstacles in the middle of the scenario combine
a nonconvex obstacle and consist of a semi-convex set. As
shown in Fig.4, BRSCA provided a feasible trajectory and
stable control for obstacle avoidance when encountering more
constraints. The iSCA is the only other method that resulted in
a collision-free trajectory. The cost value of iSCA is 98.4897,
which is slightly bigger than our 96.7878. The other methods
did not perform well when 1700 constraints were included
(the trajectory is infeasible). In Fig.5, BRSCA, RRT*, PRM
and H-A* produced collision-free trajectories. BRSCA reduces
the cost by at least 464.23% compared to other planning
methods. The detailed comparisons of computing time, cost
and collision-free rate of the BRSCA and the planners are
shown in Tab.I.

B. Hardware Implementation

We validate BRSCA on a hardware testbed, which is a 5m ×
3m rectangular space with seven irregular obstacles randomly
placed inside. The obstacle coverage rate is about 9.3%. The
tolerance in Algorithm 2 is set to ϵ = 0.1, and the length of
the planning horizon in this scenario is 200. The start point
is randomly set at [429, 207], and the endpoint is [38, 0] but
not the origin in this case to avoid edge distortion of the
cameras on the boundary. The control frequency is 25Hz. Fig.6
depicts the collision-free trajectory and the velocity variations.
The diminished velocity demonstrates stability around the
endpoint. The video link: https://www.youtube.com/watch?v=
c2bw2O7EfDA.

Fig. 6: Experiment with seven obstacles

C. Computation Time

Table II compares the computation time between BRSCA
and nonlinear solvers, iSCA. It can be seen that BRSCA can
solve the problem with multiple obstacles within around 1 sec-
ond. Besides, the computation speed grows linearly with the
number of obstacles empirically. The computation speed grows
moderately with the number of obstacles or even decreases for
other algorithms because they fail to find feasible solutions,
e.g. SQP with 15 obstacles. The performance of BRSCA is
illustrated better, even though the comparison is somewhat
unfair to ours. In summary, BRSCA has a higher probability
of finding feasible solutions and reduces the computation time
by at least 17.4%.

TABLE II: Computing time and collision-free rate of different
solvers

BRSCA iSCA Ipopt SQP SQP-L Act-set

5 Obs 0.74 1.30 9.88 9.17 10.67 163.89
7 Obs 0.98 1.24 9.68 31.38 38.21 70.28
9 Obs 1.04 1.26 10.47 91.24 124.13 70.58
12 Obs 1.23 1.31 11.83 122.22 174.16 76.67
15 Obs 1.36 1.37 13.49 27.91 38.48 220.48

Time* 1.00 1.21 10.35 52.71 72.10 112.54
Collision
free rate 100% 60% 60% 0% 0% 0%

* The average time compared to BRSCA.

TABLE III: Computation time with different tolerance settings
and numbers of obstacles

ϵ 5 obs 7 obs 9 obs 12 obs 15 obs

0.0003 58.78 70.15 80.71 96.78 114.31
0.03 31.89 38.58 44.86 54.39 64.66
0.7 0.74 0.98 1.04 1.23 1.36

Table III shows the computation time of BRSCA with differ-
ent tolerance settings and numbers of obstacles. With a modest
tolerance such as 0.7, BRSCA is real-time implementable. We
note that an appropriate stepsize selection in Algorithm 2 can
realize further acceleration. Our future work will investigate
selections of stepsize and an accelerated primal-dual approach.

https://www.youtube.com/watch?v=c2bw2O7EfDA
https://www.youtube.com/watch?v=c2bw2O7EfDA

VI. CONCLUSION

This paper develops the BRSCA algorithm for motion
planning using linear quadratic regulator formulation. We
demonstrate the relative merits of our approach with incremen-
tal SCA, which uses a similar principle. We also explore the
special structure of the formulated constrained LQR problem
by transforming it into a convex QCQP. We prove that the
dual Lagrangian problem can be regarded as an unconstrained
LQR for every dual variable. The unconstrained LQR is
proved to have stability guarantees for every dual variable,
thereby proving stability during primal-dual iterations. For
every dual variable, we use backward recursion to give closed-
form solutions for the optimal cost-to-go and feedback control
law. The proposed algorithm is validated on a hardware testbed
and through numerical simulations.

Despite the advantages of the proposed method demon-
strated above, it also has some limitations that need to be
studied in future research. 1) Nonlinear system. When facing
a nonlinear dynamic system, BRSCA can be used after lin-
earisation about equilibrium points. A sub-optimal control can
be obtained with a state-dependent Riccati equation approach.
2) Moving obstacles. Our problem formulation (5) does not
rely on stable obstacles. As long as hi(xt) is known, BRSCA
can solve the problem. However, it is difficult to know the
dynamic of the moving obstacle in practice. There are two
possible ways to solve this. i) The prediction of the obstacles
can be used in BRSCA. ii) A low-level control filter can be
designed to correct the reference trajectory made by BRSCA
and avoid collision based on sampling with onboard sensors.

REFERENCES

[1] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” IJRR, vol. 33, no. 9,
pp. 1251–1270, 2014.

[2] F. Duchoň, A. Babinec, M. Kajan, P. Beňo, M. Florek, T. Fico, and
L. Jurišica, “Path planning with modified a star algorithm for a mobile
robot,” Procedia Engineering, vol. 96, pp. 59–69, 2014.

[3] J. Yao, C. Lin, X. Xie, A. J. Wang, and C.-C. Hung, “Path planning
for virtual human motion using improved a* star algorithm,” in 2010
Seventh international conference on information technology: new gen-
erations, pp. 1154–1158, IEEE, 2010.

[4] T. Rybus, “Point-to-point motion planning of a free-floating space
manipulator using the rapidly-exploring random trees (rrt) method,”
Robotica, vol. 38, no. 6, pp. 957–982, 2020.

[5] S. Thakar, P. Rajendran, A. M. Kabir, and S. K. Gupta, “Manipulator
motion planning for part pickup and transport operations from a moving
base,” IEEE T-ASE, vol. 19, no. 1, pp. 191–206, 2022.

[6] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE TRO, vol. 12, no. 4, pp. 566–580, 1996.

[7] J. T. Betts, “Survey of numerical methods for trajectory optimization,”
Journal of guidance, control, and dynamics, vol. 21, no. 2, pp. 193–207,
1998.

[8] M. Bjelonic, R. Grandia, M. Geilinger, O. Harley, V. S. Medeiros, V. Pa-
jovic, E. Jelavic, S. Coros, and M. Hutter, “Offline motion libraries and
online mpc for advanced mobility skills,” IJRR, p. 02783649221102473,
2022.

[9] S. Banerjee, T. Lew, R. Bonalli, A. Alfaadhel, I. A. Alomar, H. M.
Shageer, and M. Pavone, “Learning-based warm-starting for fast sequen-
tial convex programming and trajectory optimization,” in 2020 IEEE
Aerospace Conference, pp. 1–8, IEEE, 2020.

[10] R. Deits and R. Tedrake, “Computing large convex regions of obstacle-
free space through semidefinite programming,” in Algorithmic founda-
tions of robotics XI, pp. 109–124, Springer, 2015.

[11] R. Deits and R. Tedrake, “Efficient mixed-integer planning for uavs in
cluttered environments,” in 2015 IEEE ICRA, pp. 42–49, IEEE, 2015.

[12] J. Tordesillas, B. T. Lopez, and J. P. How, “Faster: Fast and safe trajec-
tory planner for flights in unknown environments,” in 2019 IEEE/RSJ
IROS, pp. 1934–1940, IEEE, 2019.

[13] J. Tordesillas and J. P. How, “Mader: Trajectory planner in multiagent
and dynamic environments,” IEEE TRO, 2021.

[14] H. A. Le Thi and T. P. Dinh, “Dc programming and dca: thirty years of
developments,” Mathematical Programming, vol. 169, no. 1, pp. 5–68,
2018.

[15] T. Lipp and S. Boyd, “Variations and extension of the convex–concave
procedure,” Optimization and Engineering, vol. 17, no. 2, pp. 263–287,
2016.

[16] C. Liu, C.-Y. Lin, and M. Tomizuka, “The convex feasible set algorithm
for real time optimization in motion planning,” SIAM Journal on Control
and optimization, vol. 56, no. 4, pp. 2712–2733, 2018.

[17] Y. Mao, D. Dueri, M. Szmuk, and B. Açıkmeşe, “Successive convexifi-
cation of non-convex optimal control problems with state constraints,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 4063–4069, 2017.

[18] M. Szmuk, T. P. Reynolds, and B. Açıkmeşe, “Successive convexifi-
cation for real-time six-degree-of-freedom powered descent guidance
with state-triggered constraints,” Journal of Guidance, Control, and
Dynamics, vol. 43, no. 8, pp. 1399–1413, 2020.

[19] Y. Chen, M. Cutler, and J. P. How, “Decoupled multiagent path planning
via incremental sequential convex programming,” in 2015 IEEE ICRA,
pp. 5954–5961, IEEE, 2015.

[20] A. Singletary, W. Guffey, T. G. Molnar, R. Sinnet, and A. D. Ames,
“Safety-critical manipulation for collision-free food preparation,” IEEE
RA-L, vol. 7, no. 4, pp. 10954–10961, 2022.

[21] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach,” in 2012 IEEE/RSJ IROS, pp. 1917–1922, IEEE,
2012.

[22] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems,” Automatica, vol. 38,
no. 1, pp. 3–20, 2002.

[23] P. O. Scokaert and J. B. Rawlings, “Constrained linear quadratic
regulation,” IEEE TAC, vol. 43, no. 8, pp. 1163–1169, 1998.

[24] L. Ferranti, G. Stathopoulos, C. N. Jones, and T. Keviczky, “Con-
strained lqr using online decomposition techniques,” in 2016 IEEE CDC,
pp. 2339–2344, IEEE, 2016.

[25] Y. Chen, M. Ahmadi, and A. D. Ames, “Optimal safe controller
synthesis: A density function approach,” in 2020 IEEE ACC, pp. 5407–
5412, IEEE, 2020.

[26] G. Stathopoulos, M. Korda, and C. N. Jones, “Solving the infinite-
horizon constrained lqr problem using accelerated dual proximal meth-
ods,” IEEE TAC, vol. 62, no. 4, pp. 1752–1767, 2016.

[27] Y. Aoyama, G. Boutselis, A. Patel, and E. A. Theodorou, “Constrained
differential dynamic programming revisited,” in 2021 IEEE ICRA,
pp. 9738–9744, IEEE, 2021.

[28] B. Plancher, Z. Manchester, and S. Kuindersma, “Constrained unscented
dynamic programming,” in 2017 IEEE/RSJ IROS, pp. 5674–5680, IEEE,
2017.

[29] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems
using barrier certificates,” in International Workshop on Hybrid Systems:
Computation and Control, pp. 477–492, Springer, 2004.

[30] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision
avoidance,” IEEE TCST, vol. 29, no. 3, pp. 972–983, 2020.

[31] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[32] E. Y. Hamedani and N. S. Aybat, “A primal-dual algorithm with
line search for general convex-concave saddle point problems,” SIAM
Journal on Optimization, vol. 31, no. 2, pp. 1299–1329, 2021.

[33] X. Ding, H. Wang, H. Li, H. Jiang, and J. He, “Robopheus: A
virtual-physical interactive mobile robotic testbed,” arXiv preprint
arXiv:2103.04391, 2021.

	Introduction
	Problem Formulation
	Backward Receding SCA
	SCA
	BRSCA

	Primal-Dual Controller Synthesis
	Lagrangian Duality Formulation
	Primal-Dual Approach
	Optimal Safety-Critical Control Laws

	Simulation & Experiment
	Numerical Simulation
	Hardware Implementation
	Computation Time

	Conclusion
	References

