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Abstract— Designing safety-critical control for robotic ma-
nipulator is challenging, especially in a cluttered environment.
1) The actual trajectory might deviate from the planned one due
to the complex collision environments and non-trivial dynamics,
leads to collision; 2) The feasible space for the manipulator
is hard to obtain since the explicit distance functions between
collision meshes is unknown. This paper proposes a data-driven
control barrier function (CBF) construction method, which
extracts CBF from distance samples. The CBF guarantees the
safety for considering the system dynamic. The data-driven
method approximates the distance function and determines
the safe set. Then, the CBF is synthesized based on safe
set by a scenario-based sum-of-square (SOS) program. Unlike
the existing linearization-based approach, our method enlarges
the volume of the feasible space for planning. The control
law is obtained by solving a quadratic programming problem
with CBF in real-time, which works as a safety filter for
the desired planning-based controller. Moreover, the proposed
method guarantees safety with the proved probabilistic result.
The proposed method is validated on a 7-DOF manipulator in
both real and virtual cluttered environments. The experiments
show that the manipulator is able to actuate tasks where the
clearance between obstacles is in millimeters.

I. INTRODUCTION

Safety-critical motion planning is fundamental for appli-
cations of robotic manipulators since manipulators need to
be driven to a specified goal without collisions [1], [2]. The
whole body must have no collisions with obstacles and itself.
Due to the complex dynamics and the cluttered environments
where the potential clearance between the manipulator and
the obstacles is less than a few millimetres, motion planning
is challenging. In the past decades, path planning methods
combined with tracking control have been proposed to gen-
erate a safe path for manipulators based on the environment
map. Encouraged by the efficient applications of graph
search methods in path planning, Rapidly-Exploring Random
Trees (RRT) [2] and Probabilistic Road Map (PRM) [3]
are proposed to deal with planning problems with high-
dimensional configuration spaces. The randomized methods
are probabilistically complete, which means they may take a
long time to achieve asymptotic optimality. To deal with the
optimality problem, the non-linear optimal algorithms such
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Fig. 1: The proposed safety-critical optimal control frame-
work for the manipulator. The linearized SDF at xk overlooks
some feasible space. Our approach uses more sample of the
SDF to construct the control invariant set, which enlarge the
volume of the feasible space.

as TrajOpt [4], CHOMP [5] and OMPL [6] are used to plan
joint trajectories offline. Offline planning requires a global
map of the obstacles to making plans. However, when the
map is unknown, the solution of the offline methods would
fail. Further, since the actual trajectory might deviate from
the planned one [7], safety cannot be guaranteed.

System-dynamic-based optimization methods are pro-
posed to deal with motion deviation problems. The system
dynamic is considered in the constraints of the optimization.
The constraints also amend that the manipulator has no colli-
sion with obstacles. In this way, motion planning can satisfy
the collision-free requirement. Mixed Integer Linear Problem
(MILP) and Mixed Integer Quadratic Problem (MIQP) are
proposed to generate the motion plan by sampling and
calculating the points on the manipulator’s surface to the
obstacles [8], [9]. Since the number of integer variables
constraints is large, MILP/MIQP takes seconds to minutes
to solve. Without integer variables, the QP approach is used
for motion plans whose computing speed is much faster than
MILP/MIQP [10], [11]. In recent, with the revisiting of the
controlled invariant set and Control Barrier Function (CBF)
in control theory, QP with CBF-based constraints approach
is used for safe-critical motion plan and enforce the safety
[7], [12]. However, it is still a challenging problem for QP
to construct constraint functions concerning collision even
with a complete environment map since the manipulator’s
configuration space does not match the obstacles’ space.
The mainstream method is a sampling-based one, which
is proposed to obtain the Signed Distance Function (SDF)
between two objects considering the meshes [4], [13], [14].



The SDF represents the shortest distance and gives the near-
est points of two objects in the manipulators’ configuration
space. The differentiation of SDF is discontinuous since
there is a min and max operation to obtain the function.
Directly using SDF in QP can lead to a local minimum
and disobey the CBF-based optimization requirement of
continuity [7]. Linearization of the SDF is used to solve
this problem, and then the constraints are constructed [4],
[7], [10]. However, the linearization of SDF leads to a small
feasible space for optimization and an infeasible solution,
especially when the collision meshes are complex envelopes
in a cluttered environment [4]. Furthermore, the linearization
of SDF or SDF gives a determination for safety, but they do
not necessarily equal CBF since neither guarantees control
invariance.

This letter aims to design a real-time optimal control
method in a cluttered environment and enforces safety based
on the CBF. Specifically, the CBF is extracted based on
the safe set where collision is free. The extraction of the
CBF considers the manipulator’s dynamics and guarantees
control invariance and safety. The safe set is determined
from online SDF sampling data. The SDF is not linearized,
so the safe set space and the feasible space volume are
enlarged for the optimization problem of getting a feasible
result in a cluttered environment. Some critical challenges
need to be solved for the safety-critical motion plan of
manipulators. i) Since the explicit SDF cannot be determined,
the safe set is unknown. ii) How to extract a candidate CBF
based on a safe set since the SDF may not guarantee the
forward invariant property. iii) The number of SDF samples
needed for estimating the safe set and extracting the CBF, the
probability of safety still need to be determined. Inspired by
the scenario approach and CBF construction [15], [16], we
found it is possible to solve these challenges. Our approach
first formulates the relationship between the safe set based
on SDF, considering the collisions with obstacles and the
manipulator itself. Then, the ellipsoidal-Lyapunov-like CBF
candidate is extracted based on the safe set with online
sampling, which guarantees that the control invariant set is a
subset of the safe set. Furthermore, a theoretical probability
guarantee of safety is given based on the number of SDF
sampling used to extract the CBF. Fig.1 shows the proposed
safety-critical optimal control framework for manipulators in
a cluttered environment.

The main contributions of this letter are
• A data-driven CBF construction methodology is pro-

posed. By solving a scenario-based sum-of-square
(SOS) program, CBF is efficiently synthesized accord-
ing to the dynamics model. The construction does not
rely on the linearized SDF, thus enlarging the feasible
space for planning.

• Unsafety probability is characterized based on the num-
ber of samples and support constraints. The probability
guides the sampling number used for CBF construction
and safety-critical control.

• The proposed approach is implemented on a full-scale
manipulator (Kinova Gen3) in a obstacles cluttered

environment. The speed and efficacy of this method are
extensively explored in real-world environments, and
the method has been shown to increase planning speed
and reliability dramatically.

The rest of this paper is organized as follows. Section II
formulates the optimal control problem with CBF, and intro-
duces the relationship between safety and control invariant
set and the SDF. The data-driven CBF extraction method
and the probability guarantee for safety are given in Section
III. Simulation and implementation are shown in Section IV.
Section V concludes the paper.

II. PRELIMINARIES

A. System Dynamics and Objective

Consider a dynamic model of robotic manipulator

ẋ = f(x, u), (1)

where state x(t) ∈ X ⊂ Rn and input u(t) ∈ U ⊂ Rm, U is
a compact set and f(·, ·) is Lipschitz continuous. Our goal is
to find a control policy which allows the system to navigate
the manipulator A from initial state x0 to final state xT while
optimizing a objective function and avoiding collision with
obstacles O1, O2, . . . , OM ⊂ R3, where M ∈ Z+.

To guarantee safety, we must ensure that the state of the
manipulator A is kept within a set B where the manipulator
is collision-free. Such set B is a Controlled Invariant Set.

Definition 1 (Controlled Invariant Set). A set B is called
a controlled invariant with respect to (1) if for every x0 ∈
B, there exists an input u(t) such that x(t) ∈ B for time
t ∈ [0, tmax). When tmax = ∞, we say f(·, ·) is forward
complete.

Controlled Invariant Set guarantees the states of the con-
trolled object flow in the region with respect to the system
dynamics [17]. Roughly speaking, the states must be in the
set B and never leave. The CBF is denoted by a C1 function
b(x) : Rn → R. The corresponding controlled invariant set
B is the zero super-level set of b(x). The CBF b(x) can be
incorporated into a QP to synthesize point-wise optimal and
safe control law [7], [12].

u∗(x) = argmin
u

1

2
∥u− udes(x)∥22

subject to
∂b(x)

∂x
f(x, u) + λb(x) ≥ 0,

(SCB-QP)

where udes(x) is a desired input. u∗(x) is the safe input, and
λ is a relaxation coefficient to reduce restriction in QP. This
QP can be solved in real-time for nonlinear systems. How to
construct a b(x) and make sure the controlled invariant set
is a subset of the safe set are critical problems addressed in
this paper.

B. Safety and SDF

Here we define the safe set to determine the safety of the
controlled invariant set.

Definition 2 (Safe Set). To guarantee the manipulator is
safe without collision, the states {x(t)} should always in the



collision-free set. Suppose there exists a series of functions
hi : Rn → R:

X = ∩I
i=1{x ∈ Rn|hi(x) ≥ 0},

Int(X ) = ∩I
i=1{x ∈ Rn|hi(x) > 0},

X̄ = ∪I
i=1{x ∈ Rn|hi(x) < 0},

(2)

where Int(X ) and X̄ are the interior and complemen-
tary set of X , respectively. The sequence of functions
h1(x), . . . , hI(x) describe the safe set, and represent the
obstacles which are indexed by 1, . . . , I.

Our goal is to design controller u to guarantee the manip-
ulator within the safe set X .

The existence of such controller u is promised by the
following lemma.

Lemma 1. There exists u such that system (1) is able
to maintain safety under X , if and only if there exists a
controlled invariant set B ⊆ X .

Remark. It should be noted that the function h(x) used
for establishing a safe set is not necessarily the same as the
CBF b(x), for the safe set constructed based on the obstacles
may not guarantee the invariance property with respect to
dynamics (1).

The meshes of the obstacles and the manipulator are
considered to construct the safe set X and hi(x). When the
global information about the obstacles is known, the SDF
sd(A,Oi) between manipulator A and the obstacle Oi can
be obtained based on a popular way [4], [13], [14]

dist(A,Oi) := min
d

{∥d∥ : (A+ d) ∩ Oi ̸= ∅}, (3a)

pen(A,Oi) := min
d

{∥d∥ : (A+ d) ∩ Oi = ∅}, (3b)

sd(A,Oi) := dist(A,Oi)− pen(A,Oi), (3c)

where d is the translation of the manipulator. When global
information cannot be obtained, the obstacles need to be
sampled and constructed. Voxblox [18] and FIESTA [19]
can be used to incrementally construct the Euclidian Signed
Distance Fields (ESDF) of the obstacles and the signed
distance sd(A,Oi) is obtained. Then, two points pA, pOi

on the manipulator and the obstacle coressponding to (3) are
obtained. Note that pA, pOi are points expressed in their
own local coordinates, and they are needed to be transferred
into world coordinates. Two points in the world coordinates
are Fw

A (x)pA ∈ R3 and Fw
Oi

pOi
∈ R3. The function Fw is

forward kinematics, which gives the pose of the manipulator
and the obstacles in the world frame. The SDF is nonsmooth,
and its explicit form is hard to obtain. Linearization of SDF
is used for convex formulation in [4], [7], [11]. In this work,
we propose to directly extract the SDF based on samplings
to acquire less conservativeness.

Overall, we aim to extract a safe-critical CBF based on
samplings of SDF to guarantee collision-free manipulation
while considering the system dynamic intrinsically.

III. EXTRACT CBF FROM SDF SAMPLING CONSIDERING
DYNAMIC MODEL

This section shows the main results of our CBF construc-
tion method based on SDF sampling. Our approach is data-
driven since the explicit form of SDF cannot be obtained.
The CBF is constructed based on the SDF samplings. This
section is organized in three parts. In Section III-A we
formulate the safe set based on SDF. In Section III-B, CBF
construction method with SOS program is proposed. Based
on the samples, a data-driven CBF constrution method is
given with the probabilistic guarantee for safety in Section
III-C.

A. Safe Set Construction based on SDF

1) Outer-collision: The direct interpretation of collision-
free between the manipulator A and environmental obstacles
{Oi} is sd(A,Oi) ≥ 0,∀i ∈ I. However, this condition
is intractable to use as a constraint in motion planning
optimization problems since it has no explicit expression.
Formally, the outer-SDF is defined as:

sdot(x) = max
∥n̂ot∥2=1

min
pA∈A

pOi
∈Oi

n̂ot ·
(
Fw
A (x)pA − Fw

Oi
(x)pOi

)
.

(4)
where n̂ot is the direction of the minimal translation d in
(3). sdot(x) can be obtained by sampling points on the
controlled object and obstacles, and hereafter using the GJK
[13] or EPA [14] algorithm. With the amount of data in
the magnitude of hectobit, the function can be constructed
implicitly within milliseconds.

2) Inner-collision: In addition to the outer-collision sce-
narios considered in the last subsection, another possible
collision scenario happens for different components of the
manipulator. For this case, the inner-SDF is defined by:

sdin(x) = max
∥n̂in∥2=1

min
pA∈A
p′A∈A

n̂in ·(Fw
A (x)pA − Fw

A (x)p′A) , (5)

where pA and p′A are different points on the different joints
of the manipulator. Then, the safe set of the manipulator is
constructed as the following result.

Theorem 1. Given the outer-SDF (4) and inner-SDF (5),
safe set X of the manipulator is:

X := {x|sdov(x) ≥ 0}. (6)

where sdov(x) = min{sdot(x), sdin(x)} is the overall-SDF
derived from (4) and (5).

Proof. The composition relationship in sdov(x) is captured
by a ∧ quantifier. If for a x, the manipulator is both inner-
collision free and outer-collision free, then sdin(x) ≥ 0 ∧
sdot(x) ≥ 0, which is equivalent to sdov(x) ≥ 0. When
sdov(x) = 0, the manipulator is at the boundary of collision;
When sdov(x) > 0, the manipulator is away from collision;
When sdov(x) < 0, the collision happens. Therefore, the set
X is a safe set.



B. CBF Construction Considering Safe Set and Dynamic
Model

In most of the existing literature, the signed distance is
directly used or linearized then used as a CBF in safety-
critical controller design problems [7], [11], [20]. However,
the safe set X defined by the zero-super level set of distance
function is not necessary to be a candidate CBF, as it
has no controlled invariance property. Actually, the whole
construction procedure in Section III-A utilizes no formal
knowledge of the manipulator’s dynamic model (1). In this
subsection, we show how to synthesize a CBF b(x) from the
safe set X based on overall-SDF sdov(x).

Lemma 2. For manipulator A with dynamics (1), and
overall-SDF sdov(x), b(x) is a candidate CBF if

b(x) ≤ sdov(x), (7a)

∀x ∈ ∂B,∃u ∈ U , ∂b(x)

∂x
f(x, u) ≥ 0. (7b)

Proof. The right hand side inequality in (7a) stands for that
the CBF b(x) should be a lower-envelope of the overall-
distance function sdov(x). Under this property, if b(x) ≥ 0
for any x on the motion trajectory then sdov(x) ≥ 0, and
safety can be guaranteed. The second Condition (7b) is a
standard controlled invariance condition, details about this
condition can be found in [21].

Without an additional objective, the construction of b(x)
leads to the following feasibility optimization problem.

find b(x), s.t. (7). (8)

Although the conditions are algebraic structured elegant,
it is still very hard to construct a CBF b(x) by solving (8).
The challenges here are threefold: i) Conditions (7a) and
(7b) should hold for infinite x, which renders (8) to be an
infinitely-constrained optimisation problem; ii) sdov(x) has
only an implicit form since it is a composition of solutions
to two optimisation problems; iii) The constraint (7b) is
especially nonconvex due to the existence of control input u.
All these three challenges will be tackled in this section, but
we want to point out here that the computational complexity
of our method is still high. The reason is that the explicit
sdov(x) cannot be obtained. Estimation of sdov(x) based
on samplings costs time. We will give a detailed discussion
after showing the CBF construction algorithm 1. Then, we
will determine the set C where the samples are obtained to
construct CBF b(x).

1) Determine the set C: We suppose that the current
state of the manipulator is xk. Given that the safe set X
is constructed from the sampled data online, the CBF b(x)
should also be synthesized online. The definition domain C
is therefore varying with the state x. Starting from this point,
the maximum movement ||δx||x=xk of the manipulator is:

||δx||x=xk = max
u∈U

||f(xk, u)− xk||2. (9)

The set C at state xk is then defined by a ball
BA(xk, ||δx||x=xk) centered on xk, with radius ||δx||x=xk .

The reason why we use a high dimensional ball
but not the exact reachable region, i.e.

⋃
u∈U

f(xk, u),

is that BA(xk, ||δx||x=xk) has a good convexity, and
is computationally cheaper. Clearly,

⋃
u∈U

f(xk, u) ⊆

BA(xk, ||δx||x=xk).
2) Construct the CBF b(x): In the first part, we show

how to construct a candidate CBF b(x) satisfying the local
nonnegativity condition ∀x ∈ X , 0 ≤ b(x) in (7). b(x) is
parameterized by:

b(x) = x⊤Hbx+ db, (10)

where Hb ≺ 0, and db > 0. This kind of CBF is originated
from the quadratic Lyapunov function v(x) = −x⊤Hbx [22],
where we have b(x) = db−v(x). We consider parameterizing
the CBF b(x) to be ellipsoidal because our application has
high control frequency. As a result, in the state space, the
Lebesgue measure of the ball BA(xk, ||δx||x=xk) would
be relatively small. In such a small region, the original
nonlinear system (1) can be linearized with a slight bias. For
a stabilizable linear system, it is reasonable to consider an
ellipsoidal controlled invariant set, which is the complement
set of the super-level set of an ellipsoidal Lyapunov function
[16].

With this quadratic parameterization, we can use sum-of-
squares relaxation and S-procedure to guarantee that B ⊆ C,
as the controlled invariant set is inside the current reachable
set:

find b(x), σ1,

subject to − b(x) + σ1c(x) ∈ Σ[x],
(SOS-CBF)

where σ1 ∈ Σ[x] is a SOS multiplier. We recall that
the set C is restricted to be a ball centered at xk, i.e.
BA(xk, ||δx||x=xk) in the first step. Therefore, c(x) =
−||x − xk||2 + ||δx||2x=xk . It is evident that c(x) is a
polynomial function, thus C is a semi-algebraic set. Together
with the polynomial function b(x) and the SOS polynomial
multiplier σ1, the SOS constraint (SOS-CBF) can be con-
verted to a semi-definite constraint. We note here that the
multiplier σ1 will appear as an additional variable in the fol-
lowing synthesis optimization problem (SCSOS-CBF). Tab.I
illustrates the different sets to provide a clear understanding.

TABLE I: Illustration of set X , C, B.

Set Denotation Remark

X safe set Defined by (6), is not
explicitly applicable to the manipulator.

C reachable set Defined by BA(xk, ||δx||x=xk ), is the
maximum reachable set of system (1) at xk .

B controlled
invariant set

Synthesized by (SCSOS-CBF),
and satisfies: B ⊆ C, B ∈ X .

C. Data-driven CBF Construction

The following subsections show how to construct b(x)
satisfying the residual constraints in Condition (7) with a
promising probabilistic bound. In addition to the SOS synthe-
sis approach in the last part, we use scenario optimization to



Algorithm 1: Data-driven CBF construction

Input: the number of samples N̄ , current state xk,
the maximum ball set BA(xk, ||δx||x=xk).

Output: CBF parameter Hb and db.
1 Initialize the SOS program according to

(SCSOS-CBF) and N̄ .
2 Randomly generate N̄ samples according to π(x)
3 for i ≤ N̄ do
4 Compute sdov(x

(i)) for all samples in X̄ .
5 end
6 Solve the optimal problem (SCSOS-CBF).
7 Return Hb and db.

alleviate some of the constraints. The reason why SOS is not
fully applicable for the remaining constraint ∀x ∈ C, b(x) ≤
sdov(x) is that sdov(x) is not a polynomial function in gen-
eral. More precisely, there is even no explicit expression of it
by hand. The constraint ∀x ∈ ∂C,∃u ∈ U , ∂b(x)

∂x f(x, u) ≥ 0
is also hard to convert to SOS constraints as f(x, u) may not
be a polynomial, and exhibits bilinearity due to the existence
of control input. Although there are lifting methods [23] and
Schur relaxation methods [16] to overcome these issues, they
either do not scale well with dimension or require iterative
solutions. In our problem, real-time computation is rather
important. This makes us turn to instead using probabilistic
CBF conditions with sampled scenarios.

The scenario optimization relies on sampled scenarios to
relax the original problem. We recall that in our problem,
the decision variables are the parameters in b(x) and σ1.
The state x can then be regarded as uncertain perturbations
in a robust optimization framework [24]. Instead of solving
the robust optimization problem for any x ∈ C, we sample
N̄ realizations of x(r) around xk, termed scenarios with a
probability measure π which satisfies:∫

C
π(x)dx = 1. (11)

Let X̄ = {x(1), x(2), . . . , x(N̄)} be the set of sampled
scenarios. These scenarios are independently and identically
sampled according to π. We could construct the following
scenario program:

findu∈U b(x), u

subject to b(x(i)) ≤ sdov(x
(i)),

∂b(x)

∂x
f(x, u) + αb(x)

∣∣∣∣
x=x(i)

≥ 0,

∀ x(i) ∈ X̄.

(SC-CBF)

The lower-envelope condition ∀x ∈ C, b(x) ≤ sdov(x) is
enforced only on the finite set of scenarios X̄ . The controlled
invariance condition (7b) is substituted by a relaxed formu-
lation ∀x ∈ B,∃u ∈ U , ∂b(x)

∂x f(x, u) + αb(x) ≥ 0, where
α ∈ R+. This relaxed formulation enables us to eliminate the
nonconvexity introduced by the cross terms. The additional
term αb(x) is motivated by the zero-CBF approach [12].

The final synthesis program for a data-driven CBF with
SD samples is given as follows:

Theorem 2. For dynamical system (1), sampling a set of
scenarios X̄ = {x(1), x(2), . . . , x(N̄)} ∈ C, the CBF b(x)
at the current state xk can be constructed by solving the
following program:

max
u∈U,σ1∈Σ[x],Hb≺0,db>0

db

subject to b(x(i)) ≤ sdov(x
(i)),

∂b(x)

∂x
f(x, u)

∣∣∣∣
x=x(i)

+ αb(x) ≥ 0,

∀ x(i) ∈ X̄,

− b(x) + σ1c(x) ∈ Σ[x],

||Hb|| = 1.
(SCSOS-CBF)

Proof. Condition sdov(x
(i)) ≤ b(x(i)) indicates that the

control invariant set is a subset of safe set in the sense of
scenarios x(i) ∈ X̄ . The condition ∂b(x)

∂x f(x, u)+αb(x) ≥ 0
leads to a convex problem when seeking barrier functions
with numerical means. Condition ∀ x(i) ∈ X̄ restricts the
sampling points are in the reachable set C. Condition −b(x)+
σ1c(x) ∈ Σ[x] indicates that for any x, −b(x)+σ1c(x) ≥ 0
and further ∀ x ∈ B, c(x) ≥ 0. Regularization of Hb enables
to enlarge the volume of the set B by maximizing db.

Here we note that our method does not require to pa-
rameterize the controller, unlike the results in literature [16].
The objective is to maximize the value of db to enlarge the
volume of the control invariant set B, under the regularization
of Hb. The decision variables u, σ1, Hb, db are stacked by
z ∈ Re for the ease of following theoretic analysis, where
e = m+1+n2 +1. The set of satisfying all the constraints
about scenarios is defined by Sx. Note, the constraint b ∈
b : ||Hb|| = 1 does not belong to Sx, since it is independent
of scenarios X̄ .

Algorithm 1 is a data-driven methodology for CBF synthe-
sis considering the system dynamics. Once the SOS program
is built, we can solve (SCSOS-CBF) with a semi-definite
programming solver. When the next state xk+1 comes in, we
only need to go through lines 2-7 in Algorithm 1. Although
the proposed algorithm costs more time to construct the CBF
due to the multi-sampling process, it aims to enlarge the
control invariant set B for the specific mesh shapes of the
manipulators and obstacles.

D. Probabilistic Guarantee for Safety

Since the number of sampling is finite, the data-driven
method cannot guarantee the equivalence between b(x(i)) ≤
sdov(x

(i)) and b(x) ≤ sdov(x). Assume that z is the solution
of (SCSOS-CBF). It would be possible that z is not in
the safe solution set Sx, due to the uncertainty caused by
sampling. Violation is defined as {δ ∈ ∆ : z /∈ Sx}. A
necessary notion termed violation probability is given as:



Definition 3 (violation probability [15]). The violation prob-
ability of a given solution z is defined as V (z) = P{x ∈ C :
z /∈ Sx}.

Recent results point out that the violation probability V (z)
is closely related to both the number of scenarios and the
complexity, i.e. number of support constraints.

Algorithm 2: Determine the number of samples
Input: the dimension of the decision variables e,

confidence parameter β, risk level ϵ, the
predefined maximum number N̄max,
probability threshold ϵp.

Output: the minimum number of the sample N̄ .
1 N̄min = e.
2 while N̄min + 1 ≤ N̄max do
3 compute the inverse incomplete beta function

→ γL and → γU , based on (β, e, N̄min − e+ 1)
and (β, e, N̄max − e+ 1), respectively.

4 tL1 = 1− γL, tL2 = 1, tU1 = 1− γU , tU2 = 1.
5 obtain PL1 PL2 PU1 and PU2 according to (12)

based on tL1, tL2, tU1 and tU2.
6 if PL1 × PL2 ≥ 0 then
7 ϵ1 = 0.
8 else
9 while tL2 − tL1 > 0 do

10 tL = ⌈(tL2 + tL1)/2⌉.
11 obtain PtL according to (12) based on tL.
12 if PtL > 0 then
13 tL1 = tL.
14 else
15 tL2 = tL.
16 end
17 ϵ1 = 1− tL2.
18 end
19 end
20 compute ϵ2 based on tU1, tU2, PU1 and PU2.
21 if |ϵ1 − ϵ| > ϵp or |ϵ1 − ϵ2| > ϵp then
22 N̄min = N̄min + ⌈(N̄min − N̄max)/2⌉
23 else
24 N̄ = N̄min.
25 return N̄
26 end
27 end

Definition 4. A constraint in Sx of the synthesis program
(SCSOS-CBF) is called a support constraint if its removal
(while all the other constraints are maintained) changes the
optimal solution. The complexity c∗

N̄
of the synthesis sce-

nario program (SCSOS-CBF) is the number of the support
constraints.

Then, the probabilistic result of violation probability based
on the N̄ scenarios is given in the following results.

Theorem 3 (adopted from [25]). Consider the CBF synthesis
program (SCSOS-CBF) with N̄ > e = m + n2 + 2. Given

confidence parameter β ∈ (0, 1), for any k = 0, 1, . . . , e,
consider the polynomial equation in the t variable(

N̄

k

)
tN̄−k − β

2N̄

N̄−1∑
i=k

(
i

k

)
ti−k =

β

6N̄

4N̄∑
i=N̄+1

(
i

k

)
ti−k.

(12)
This equation has two solutions in [0,+∞) which are

denoted by t(k) and t̄(k), where t(k) ≤ t̄(k). Let ϵ(k) :=
max{0, 1− t̄(k)} and ϵ̄ := 1− t(k). Then, for C and any π,
it holds that

PN̄{ϵ(c∗N̄ ) ≤ V (z∗) ≤ ϵ̄(c∗N̄ )} ≥ 1− β. (13)

This result shows the relationship between the number
of support constraints c∗

N̄
, the violation probability on the

optimal solution V (z∗) and parameter β. The scenario con-
straints are more prone to be violated if the complexity is
high. One intuitive interpretation of this result is that the
higher complexity is, the more boundary of constraints the
sorted solution stands on. Then, the uncertain constraints
have a higher risk. The following corollary is a direct result
from Theorem 3.

Corollary 3.1. For given β, it always holds that ϵ(c∗
N̄
) ≤

ϵ(e) ≤ ϵ̄(c∗
N̄
) ≤ ϵ̄(e). Besides, we certainly have

PN̄{V (z∗) ≤ ϵ̄(c∗
N̄
)} ≥ 1− β.

One direct application of this result is that we can measure
at most how many samples are required for a given confi-
dence parameter β and risk level ϵ. The following Lemma
concludes the amount of data.

Lemma 3. Given risk level ϵ ∈ [0, 1), confidence parameter
β ∈ [0, 1), then the amount N̄(ϵ, β) of samples required to
render PN̄{V (z∗) ≤ ϵ̄} ≥ 1− β fulfills:

N̄(ϵ, β) ≥

{
argmin

N̄∈N
N̄

s.t.(12)
(14)

Although Lemma 3 gives guidance on how many sampled
data are necessary for the acceptable risk level and confi-
dence, the result is hard to obtain since the optimization
problem in (14) is a non-convex mixed integer program.
We provide a heuristic algorithm which can compute N̄
given e, ϵ and β. There are two levels of the dichotomic
search program in Algorithm 2. The first one computes the
minimum number of samples. The second one computes
the risks. Line 21 gives the terminal conditions: 1) the risk
based on N̄ samples is near the risk goal, 2) the risk cannot
decrease too much with N̄ increasing.

IV. SIMULATION AND IMPLEMENTATION

This section gives the control synthesis with the proposed
CBF construction to formulate a safety-critical control for
the robotic manipulator.

A. Control Synthesis

We pre-construct a trajectory as a series of way points by
planning methods for the manipulators, but it is unnecessarily
safe. udes in (SCB-QP) is computed with a P controller to



Fig. 2: Experiment implemented on the Kinova Gen3, reach-
ing an object on the left side

the next way-point. Similar to [7], we also set a way-point
switch mechanism to avoid the manipulator getting stuck. As
pointed out in [7, Proposition 1], (SCB-QP) can guarantee
safety with kinematic model of robotic manipulators when
using an exponential stable low-level velocity tracking con-
troller. Specifically, the states x are the configuration of each
joint, and the inputs uk are the velocity of each joint.

Definition 5 (Low-level velocity tracking controller). The
manipulator is embedded a low-level velocity tracking con-
troller. For a velocity command vc(q; t), consider the corre-
sponding tracking error:

ė = q̇ − vc(q; t); (15)

The controller u = k(x; t) can exponentially stabilize the
tracking:

∥ė(t)∥2 ≤ le−λt∥ė0∥ (16)

where l, λ > 0.

The collision-free behaviour is enforced for the kinematic
model of the manipulator by constructing the CBF b(x)
online through Algorithm 1, and solving (SCB-QP).

B. Implementation

We implement our methodology for manipulator motion
planning in obstacle cluttered environments to validate the
efficacy. The manipulator, obstacles and objects are a series
of fine-shaped meshes (0.02 mm tolerance). Furthermore,
the manipulator is described in a Unified Robot Description
Format (URDF) in the simulation environment with Robotics
Toolbox in MATLAB. Two experimental scenarios have real
scenes (see Fig.2 and Fig.3). We aim at using a Kinova Gen
3 robotic manipulator to grasp an object behind a board on
a shelf. Our method first requires determining the number of

TABLE II: Theoretical risk and computation times of the
data-driven CBF-construction

Theoretical risk Number of samplings Computation time (ms)

0.5 108 27.41
0.4 138 27.98
0.3 188 25.25
0.2 288 24.49
0.1 588 27.55
0.05 1188 28.28

Fig. 3: Experiment implemented on the Kinova Gen3, reach-
ing an object on the right side

Fig. 4: Experiment implemented on the Kinova Gen3 in a
virtual environment with static obstacles

samples needed to construct (SCSOS-CBF) by Algorithm 2.
Then, (SCSOS-CBF) is solved with Sedumi and SOSTOOL
[26] based on Algorithm 1. Finally, (SCB-QP) is solved, and
the command is sent to the manipulator. All these procedures
are carried out on a computer with an Intel(R) Core(TM) i9-
9980XE CPU, 3.00GHz processor and 64GB RAM.

In the real scene, the primary obstacle of concern is the
shelf made of eight boards which blocks and the desk. The
object is a solid glue behind the block on the shelf. This
scene stands for a typical application where the manipulator
tends to grasp something in a complicated and tense indoor
environment. For example, use a manipulator to grab and
unplug a charger behind a LCD monitor. When performing
such tasks, the clearance between the manipulator and the
obstacles is less than a few millimetres. Our methods can
achieve such tasks since the SDF is not linearized, thus
enlarge the volume of the feasible space. The data-driven
CBF further guarantees safety for the certain model (1). Fig.2
and Fig.3 show the motions and the distances throughout the
experiment.

We then design a much more complex environment in the
virtual scene to test the method. The obstacles of concern
are eight balls, four pillars and one giant board. The object
is on the other side of the board. The manipulator must pass
through the hold at the bottom of the board while avoiding
collision. Our method can achieve this task with a clearance
of one millimetre. Fig.4 show the virtual motion and the
distance throughout the trajectory. We continued to simulate



Fig. 5: Experiment implemented on the Kinova Gen3 in a
virtual environment with moving obstacles

the virtual scene where the eight balls are moving. Fig.5
shows the virtual test with moving obstacles and the distance
throughout the motion. The video can be found at https:
//www.youtube.com/watch?v=EYDnT_Ayq6c.

Each scene is tested for ten times with different number
of samples. Consequently, the theoretical safety probability
is quite different, but all the tests are successfully operated
with safety in practice. In algorithm 2, we set the β = 0.05,
ϵ from 0.5 to 0.05. The computation time of our data-driven
CBF-construction method is shown in tab.II. The theoretical
risk decreases as the number of samplings grows. Using
1188 samples, it has a 95% probability that the task is safe.
The computation time does not increase with the number of
sampling, which shows that our method can guarantee safety
and computing timely. As for the average QP computation
time, it is 12.41 ms. For comparison purposes, we also
conducted the test based on CBF [7] and TrajOpt. The
average computation time for QP in CBF is 12.34 ms,
which is similar to our result. The average computation time
for TrajOpt is 270 ms. The CBF and TrajOpt cannot be
successful in all tests, especially when the clearance is with
in millimeters. The average computation time for our method
is 39.31 ms.

V. CONCLUSION

In this letter, a data-driven CBF construction method is
proposed. The method tails the characteristic of the system
model to ensure safety under the merit of control invari-
ance. By sampling data in real-time and incorporating the
samplings as scenarios in the optimization problem, our
method provides less conservative results with a probabil-
ity guarantee. We also validate the proposed algorithm on
industrial robotics manipulators to perform several safety-
critical control tasks. In the future, we will explore the multi-
manipulator cooperatively equipment assemble tasks.
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